A new analytical technique for evaluating the generalized Goodwin-Staton integral (GGS) is described. A closed-form evaluation is presented. The GGS integral are expressed in terms of linear combinations of binomial coefficients and incomplete gamma function. A further comparison of analytical results with numerical models demonstrates a high accuracy of the developed analytical solution. The convergence of the results is shown. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:8 / 11
页数:4
相关论文
共 14 条
[1]
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]
[Anonymous], TABLES INTEGRALS SUM
[3]
Chaudhry M. A., 2001, On a Class of Incomplete Gamma Functions with Applications
机构:
King Fahd Univ Petr & Minerals, Dept Math Sci, Dhahran 31261, Saudi ArabiaKing Fahd Univ Petr & Minerals, Dept Math Sci, Dhahran 31261, Saudi Arabia
Chaudhry, MA
Zubair, SM
论文数: 0引用数: 0
h-index: 0
机构:King Fahd Univ Petr & Minerals, Dept Math Sci, Dhahran 31261, Saudi Arabia
机构:
King Fahd Univ Petr & Minerals, Dept Math Sci, Dhahran 31261, Saudi ArabiaKing Fahd Univ Petr & Minerals, Dept Math Sci, Dhahran 31261, Saudi Arabia
Chaudhry, MA
Zubair, SM
论文数: 0引用数: 0
h-index: 0
机构:King Fahd Univ Petr & Minerals, Dept Math Sci, Dhahran 31261, Saudi Arabia