Elevated [CO2] changes soil organic matter composition and substrate diversity in an arid ecosystem

被引:29
作者
Tfaily, Malak M. [1 ]
Hess, Nancy J. [1 ]
Koyama, Akihiro [2 ,3 ]
Evans, R. D. [3 ]
机构
[1] Environm Mol Sci Lab, Richland, WA 99354 USA
[2] Algoma Univ, Sault Ste Marie, ON P6A 2G4, Canada
[3] Washington State Univ, Pullman, WA 99164 USA
关键词
Soil organic matter; Mass spectrometry; Arid ecosystems; Climate change; CO2; concentrations; MOJAVE DESERT ECOSYSTEM; LITTER DECOMPOSITION; CARBON SEQUESTRATION; ATMOSPHERIC CO2; PLANT; NITROGEN; DYNAMICS; METABOANALYST; STABILIZATION; TEMPERATURE;
D O I
10.1016/j.geoderma.2018.05.025
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Little is known about how elevated atmospheric [CO2] will impact the dynamics of soil organic matter (SOM) in arid ecosystems. Evans et al. (2014) reported greater ecosystem carbon (C) and nitrogen (N) concentrations following 10 years exposure to elevated atmospheric [CO2] at the Nevada Desert Free-Air Carbon dioxide Enrichment (FACE) Facility (NDFF). In this study, we investigated potential mechanisms of SOC and total N accumulation and potential SOM stabilization using high resolution mass spectrometry. Samples were collected from soil profiles to 1 m in depth with 0.2 m increment under the dominant evergreen shrub Larrea trldentate and were air dried at room temperature. SOM was extracted sequentially with solvents with different polarity. The differences in the molecular composition and diversity of SOM in the different extracts were more evident in surface soils and declined with depth, and were consistent with higher SOC and total N concentrations under elevated than ambient [CO2]. Our results support the hypothesis that increased root exudation and/or microbial necromass from stabilization of labile C and N can contribute to SOM and N pools. We found that plant-derived compounds were primary substrates for microbial activity under elevated [CO2] and microbial necromass were the main constituents of stabilized SOM. Our results suggest that arid ecosystems are a potential large C sink under elevated [CO2] given arid ecosystems constitute 47% of the terrestrial land surface, and that labile compounds are transformed to stable SOM via microbial processes. Arid systems are limited by water, and thus may have a different C storage potential imder changing climates than other ecosystems that are limited by nitrogen or phosphorus.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 60 条
[1]   The use of neutral lipid fatty acids to indicate the physiological conditions of soil fungi [J].
Baath, E .
MICROBIAL ECOLOGY, 2003, 45 (04) :373-383
[2]   Exploring soil microbial communities and soil organic matter: Variability and interactions in arable soils under minimum tillage practice [J].
Bausenwein, U. ;
Gattinger, A. ;
Langer, U. ;
Embacher, A. ;
Hartmann, H. -P. ;
Sommer, M. ;
Munch, J. C. ;
Schloter, M. .
APPLIED SOIL ECOLOGY, 2008, 40 (01) :67-77
[3]   Soil microbial activity and N availability with elevated CO2 in Mojave desert soils -: art. no. GB1011 [J].
Billings, SA ;
Schaeffer, SM ;
Evans, RD .
GLOBAL BIOGEOCHEMICAL CYCLES, 2004, 18 (01)
[4]   13C and 15N stabilization dynamics in soil organic matter fractions during needle and fine root decomposition [J].
Bird, Jeffrey A. ;
Kleber, Markus ;
Torn, Margaret S. .
ORGANIC GEOCHEMISTRY, 2008, 39 (04) :465-477
[5]   Ab initio prediction of metabolic networks using Fourier transform mass spectrometry data [J].
Breitling, Rainer ;
Ritchie, Shawn ;
Goodenowe, Dayan ;
Stewart, Mhairi L. ;
Barrett, Michael P. .
METABOLOMICS, 2006, 2 (03) :155-164
[6]   Coupled cycling of dissolved organic nitrogen and carbon in a forest stream [J].
Brookshire, ENJ ;
Valett, HM ;
Thomas, SA ;
Webster, JR .
ECOLOGY, 2005, 86 (09) :2487-2496
[7]   Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept [J].
Castellano, Michael J. ;
Mueller, Kevin E. ;
Olk, Daniel C. ;
Sawyer, John E. ;
Six, Johan .
GLOBAL CHANGE BIOLOGY, 2015, 21 (09) :3200-3209
[8]   Characterization of water extractable organic matter in a deep soil profile [J].
Corvasce, M ;
Zsolnay, A ;
D'Orazio, V ;
Lopez, R ;
Miano, TM .
CHEMOSPHERE, 2006, 62 (10) :1583-1590
[9]   The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? [J].
Cotrufo, M. Francesca ;
Wallenstein, Matthew D. ;
Boot, Claudia M. ;
Denef, Karolien ;
Paul, Eldor .
GLOBAL CHANGE BIOLOGY, 2013, 19 (04) :988-995
[10]   Elevated CO2 increases nitrogen rhizodeposition and microbial immobilization of root-derived nitrogen [J].
de Graaff, Marie-Anne ;
Six, Johan ;
van Kessel, Chris .
NEW PHYTOLOGIST, 2007, 173 (04) :778-786