On the problem of the amenability of the gauge group

被引:6
作者
Carey, A
Grundling, H
机构
[1] Australian Natl Univ, Inst Math Sci, Canberra, ACT 0200, Australia
[2] Univ New S Wales, Dept Math, Sydney, NSW 2052, Australia
关键词
gauge group; amenability; mean; invariant vacuum; quantised gauge theory;
D O I
10.1023/B:MATH.0000043318.42556.03
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let G be one of the local gauge groups C(X, U(n)), C-infinity(X, U(n)), C(X, SU(n)) or C-infinity(X, SU(n)) where X is a compact Riemannian manifold. We observe that G has a nontrivial group topology, coarser than its natural topology, w.r.t. which it is amenable, viz. the relative weak topology of C(X, M(n)). This topology seems more useful than other known amenable topologies for G. We construct a simple fermionic model containing an action of G, continuous w.r.t. this amenable topology.
引用
收藏
页码:113 / 120
页数:8
相关论文
共 12 条
[1]  
ALBEVERIO S., 1993, NONCOMMUTATIVE DISTR
[2]  
[Anonymous], 1988, MATH SURVEYS MONOGR
[3]  
[Anonymous], 1986, FUNDAMENTALS THEORY
[4]   GENERALIZED MEASURES IN GAUGE-THEORY [J].
BAEZ, JC .
LETTERS IN MATHEMATICAL PHYSICS, 1994, 31 (03) :213-223
[5]  
Bleecker D., 1981, GAUGE THEORY VARIATI
[6]  
Bratteli O., 1997, OPERATOR ALGEBRAS ST, V2
[7]   Some extremely amenable groups [J].
Giordano, T ;
Pestov, V .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (04) :273-278
[8]   On minimal actions of Polish groups [J].
Glasner, E .
TOPOLOGY AND ITS APPLICATIONS, 1998, 85 (1-3) :119-125
[9]  
GLASNER S., 1976, Lecture Notes in Math., V517
[10]   NUCLEAR C-STAR-ALGEBRAS HAVE AMENABLE UNITARY GROUPS [J].
PATERSON, ALT .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 114 (03) :719-721