Coxeter multiarrangements with quasi-constant multiplicities

被引:8
作者
Abe, Takuro [1 ]
Yoshinaga, Masahiko [1 ]
机构
[1] Kyoto Univ, Dept Math, Sakyo Ku, Kyoto 6068502, Japan
关键词
Hyperplane arrangements; Logarithmic vector fields; Coxeter arrangements; CONTACT-ORDER FILTRATION; FREE ARRANGEMENT; DERIVATIONS;
D O I
10.1016/j.jalgebra.2009.07.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study structures of derivation modules of Coxeter multiarrangements with quasi-constant multiplicities by using the primitive derivation. As an application, we show that the characteristic polynomial of a Coxeter multiarrangement with quasi-constant multiplicity is combinatorially computable. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:2839 / 2847
页数:9
相关论文
共 18 条
[1]   The characteristic polynomial of a multiarrangement [J].
Abe, Takuro ;
Terao, Hiroaki ;
Wakefield, Max .
ADVANCES IN MATHEMATICS, 2007, 215 (02) :825-838
[2]   INVARIANTS OF FINITE GROUPS GENERATED BY REFLECTIONS [J].
CHEVALLEY, C .
AMERICAN JOURNAL OF MATHEMATICS, 1955, 77 (04) :778-782
[3]   FREE HYPERPLANE ARRANGEMENTS BETWEEN AN-1 AND BN [J].
EDELMAN, PH ;
REINER, V .
MATHEMATISCHE ZEITSCHRIFT, 1994, 215 (03) :347-365
[4]   Free arrangements and rhombic tilings [J].
Edelman, PH ;
Reiner, V .
DISCRETE & COMPUTATIONAL GEOMETRY, 1996, 15 (03) :307-340
[5]   The module of logarithmic p-forms of a locally free arrangement [J].
Mustata, M ;
Schenck, HK .
JOURNAL OF ALGEBRA, 2001, 241 (02) :699-719
[6]  
Orlik P., 1992, GRUNDLEHREN MATH WIS, V300
[8]  
Saito K., 2004, FROBENIUS MANIFOLDS, V36, P265
[9]  
Saito K., 1980, J.Fac. Sci. Univ. Tokyo Sect. IA Math., V27, P265, DOI 10.3136/nskkk1962.27.6265
[10]   A FORMULA FOR THE CHARACTERISTIC POLYNOMIAL OF AN ARRANGEMENT [J].
SOLOMON, L ;
TERAO, H .
ADVANCES IN MATHEMATICS, 1987, 64 (03) :305-325