Anion-Dependent Doping and Charge Transport in Organic Electrochemical Transistors

被引:164
作者
Flagg, Lucas Q. [1 ]
Giridharagopal, Rajiv [1 ]
Guo, Jiajie [2 ]
Ginger, David S. [1 ]
机构
[1] Univ Washington, Dept Chem, Seattle, WA 98195 USA
[2] Univ Washington, Mol Engn & Sci Inst, Seattle, WA 98195 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
QUARTZ-CRYSTAL MICROBALANCE; FIELD-EFFECT TRANSISTORS; THIN-FILM TRANSISTORS; AQUEOUS-SOLUTIONS; POLY(3-HEXYLTHIOPHENE) FILMS; CONDUCTING POLYMERS; ION; ELECTROLYTE; POLYPYRROLE; PERFORMANCE;
D O I
10.1021/acs.chemmater.8b02220
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We study the effects of different electrolyte anions on the mixed ionic/electronic transport properties of organic electrochemical transistors (OECTs) based on poly(3-hexylthiophene-2,5-diyl). We show that the transport properties depend on the anion present in the electrolyte, with greater source-drain currents resulting from the use of molecular anions such as hexafluorophosphate and trifluoromethanesulfonylimide than from the use of smaller atomic anions such as fluoride or chloride. Using spectroelectrochemistry, we show the maximum doping level that can be achieved in an aqueous environment is also anion-dependent. Furthermore, we find that the average electronic carrier mobility at a given doping level depends on the chemistry of the compensating counterion. We further investigate this dependence by electrochemical quartz crystal microbalance measurements, showing the solvation of the dopant anions within the polymer is drastically different depending on the choice of the anion. Surprisingly, we find that the kinetics of the doping process in these OECTs is faster for bulkier anions. Finally, we use electrochemical strain microscopy to resolve ion-dependent differences in doping and local swelling at the nanoscale, providing further insight into the coupling between local structure and ion uptake. These measurements demonstrate that the identity of the compensating ion and its interaction with the polymer and solvent are important considerations for benchmarking and designing polymer materials for mixed ionic/electronic conduction applications.
引用
收藏
页码:5380 / 5389
页数:10
相关论文
共 82 条
[1]   Analytic model of carrier mobility in doped disordered organic semiconductors -: art. no. 235202 [J].
Arkhipov, VI ;
Emelianova, EV ;
Heremans, P ;
Bässler, H .
PHYSICAL REVIEW B, 2005, 72 (23)
[2]   Coordination chemistry in the solid state [J].
Bruce, PG .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 354 (1706) :415-436
[3]   EXPERIMENTAL ASPECTS OF USE OF THE QUARTZ CRYSTAL MICROBALANCE IN SOLUTION [J].
BRUCKENSTEIN, S ;
SHAY, M .
ELECTROCHIMICA ACTA, 1985, 30 (10) :1295-1300
[4]  
Chen SM, 2014, INT J ELECTROCHEM SC, V9, P4072
[5]   ELECTRICAL-CONDUCTIVITY IN DOPED POLYACETYLENE [J].
CHIANG, CK ;
FINCHER, CR ;
PARK, YW ;
HEEGER, AJ ;
SHIRAKAWA, H ;
LOUIS, EJ ;
GAU, SC ;
MACDIARMID, AG .
PHYSICAL REVIEW LETTERS, 1977, 39 (17) :1098-1101
[6]   ELECTROCHEMICAL APPLICATIONS OF THE QUARTZ CRYSTAL MICROBALANCE [J].
DEAKIN, MR ;
BUTTRY, DA .
ANALYTICAL CHEMISTRY, 1989, 61 (20) :A1147-+
[7]   The chemical and structural origin of efficient p-type doping in P3HT [J].
Duong, Duc T. ;
Wang, Chenchen ;
Antono, Erin ;
Toney, Michael F. ;
Salleo, Alberto .
ORGANIC ELECTRONICS, 2013, 14 (05) :1330-1336
[8]   Doping-Induced Absorption Bands in P3HT: Polarons and Bipolarons [J].
Enengl, Christina ;
Enengl, Sandra ;
Pluczyk, Sandra ;
Havlicek, Marek ;
Lapkowski, Mieczyslaw ;
Neugebauer, Helmut ;
Ehrenfreund, Eitan .
CHEMPHYSCHEM, 2016, 17 (23) :3836-3844
[9]   Influence of disorder on transfer characteristics of organic electrochemical transistors [J].
Friedlein, Jacob T. ;
Rivnay, Jonathan ;
Dunlap, David H. ;
McCulloch, Iain ;
Shaheen, Sean E. ;
McLeod, Robert R. ;
Malliaras, George G. .
APPLIED PHYSICS LETTERS, 2017, 111 (02)
[10]   Microsecond Response in Organic Electrochemical Transistors: Exceeding the Ionic Speed Limit [J].
Friedlein, Jacob T. ;
Donahue, Mary J. ;
Shaheen, Sean E. ;
Malliaras, George G. ;
McLeod, Robert R. .
ADVANCED MATERIALS, 2016, 28 (38) :8398-8404