Topological Insulator GMR Straintronics for Low-Power Strain Sensors

被引:2
|
作者
Li, Lingzhi [1 ]
Wang, Yunhua [2 ,3 ]
Wang, Zongtan [1 ]
Liu, Yulan [1 ]
Wang, Biao [2 ,3 ]
机构
[1] Sun Yat Sen Univ, Sch Engn, Guangzhou 510006, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Sinofrench Inst Nucl Engn & Technol, Zhuhai 519082, Peoples R China
[3] Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
topological insulator; giant magnetoresistance; magnetic switch; strain sensor; Fabry-Perot quantum resonances; SINGLE DIRAC CONE; SURFACE-STATES; TRANSPORT; SB2TE3;
D O I
10.1021/acsami.8b09664
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A quantum spin Hall insulator, i.e., topological insulator (TI), is a natural candidate for low-power electronics and spintronics because of its intrinsic dissipationless feature. Recent density functional theory and scanning tunneling spectroscopy experiments show that the mechanical strain allows dynamic, continuous, and reversible modulations of the topological surface states within the topological phase and hence opens prospects for TI straintronics. Here, we combine the mechanical strain and the giant magnetoresistance (GMR) of a ferromagnet-TI (FM-TI) junction to construct a novel TI GMR straintronics device. Such a FM-strained-FM-TI junction permits several energy spectral ranges for 100% GMR and a robust strain-controllable magnetic switch. Beyond the 100% GMR energy range, we observe a strain-modulated oscillating GMR, which is an alternative hallmark of the Fabry-Perot quantum interference of Dirac surface states. These strain-sensitive GMR responses indicate that FM-strained-FM-TI junctions are very favorable for practical applications for low-power nanoscale strain sensors.
引用
收藏
页码:28789 / 28795
页数:7
相关论文
共 50 条
  • [31] Fast and low-power thermooptic switch on thin silicon-on-insulator
    Espinola, R.L.
    Tsai, M.-C.
    Yardley, James T.
    Osgood Jr., R.M.
    IEEE Photonics Technology Letters, 2003, 15 (10) : 1366 - 1368
  • [32] Micro light plates for low-power photoactivated (gas) sensors
    Markiewicz, Nicolai
    Casals, Olga
    Fabrega, Cristian
    Gracia, Isabel
    Cane, Carles
    Wasisto, Hutomo Suryo
    Waag, Andreas
    Daniel Prades, Joan
    APPLIED PHYSICS LETTERS, 2019, 114 (05)
  • [33] A Low-Power MEMS Microphone Array for Wireless Acoustic Sensors
    Ottoy, Geoffrey
    Thoen, Bart
    De Strycker, Lieven
    2016 IEEE SENSORS APPLICATIONS SYMPOSIUM (SAS 2016) PROCEEDINGS, 2016, : 373 - 378
  • [34] Low-power micromachined structures for gas sensors with improved robustness
    Gràcia, I
    Götz, A
    Plaza, JA
    Cané, C
    Roetsch, P
    Böttner, H
    Seibert, K
    MICROMACHINED DEVICES AND COMPONENTS VI, 2000, 4176 : 253 - 263
  • [35] A Low-Power 1-V Potentiostat for Glucose Sensors
    Zuo, Liang
    Islam, Syed K.
    Mahbub, Ifana
    Quaiyum, Farhan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2015, 62 (02) : 204 - 208
  • [36] Low-Power Chemiresistive Gas Sensors for Transformer Fault Diagnosis
    Mei, Haixia
    Peng, Jingyi
    Xu, Dongdong
    Wang, Tao
    MOLECULES, 2024, 29 (19):
  • [37] LOW-POWER THICK-FILM CO GAS SENSORS
    LEE, DD
    SOHN, BK
    MA, DS
    SENSORS AND ACTUATORS, 1987, 12 (04): : 441 - 447
  • [38] A glass/silicon technology for low-power robust gas sensors
    Plaza, JA
    López-Bosque, MJ
    Grácia, I
    Cané, C
    Wöllenstein, J
    Kühner, G
    Plescher, G
    Böttner, H
    IEEE SENSORS JOURNAL, 2004, 4 (02) : 195 - 206
  • [39] Far-Field Wireless Power Delivery and Power Management for Low-Power Sensors
    Popovic, Zoya
    2013 IEEE WIRELESS POWER TRANSFER (WPT), 2013, : 1 - 4
  • [40] Continuous Monitoring of TATP Using Ultrasensitive, Low-Power Sensors
    Ricci, Peter P., III
    Gregory, Otto J.
    IEEE SENSORS JOURNAL, 2020, 20 (23) : 14058 - 14064