DeepStrain Evidence of Asymptomatic Left Ventricular Diastolic and Systolic Dysfunction in Young Adults With Cardiac Risk Factors

被引:4
作者
Morales, Manuel A. [1 ,2 ,3 ]
Snel, Gert J. H. [4 ]
van den Boomen, Maaike [1 ,2 ,4 ,5 ]
Borra, Ronald J. H. [4 ,6 ]
van Deursen, Vincent M. [7 ]
Slart, Riemer H. J. A. [6 ,8 ]
Izquierdo-Garcia, David [1 ,2 ,3 ]
Prakken, Niek H. J. [4 ]
Catana, Ciprian [1 ,2 ]
机构
[1] Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Dept Radiol, Boston, MA USA
[2] Harvard Med Sch, Boston, MA USA
[3] Harvard MIT Div Hlth Sci & Technol, Cambridge, MA USA
[4] Univ Groningen, Univ Med Ctr Groningen, Med Imaging Ctr, Dept Radiol, Groningen, Netherlands
[5] Massachusetts Gen Hosp, Cardiovasc Res Ctr, Boston, MA USA
[6] Univ Groningen, Univ Med Ctr Groningen, Med Imaging Ctr, Dept Nucl Med & Mol Imaging, Groningen, Netherlands
[7] Univ Groningen, Univ Med Ctr Groningen, Dept Cardiol, Groningen, Netherlands
[8] Univ Twente, Fac Sci & Technol, Dept Biomed Photon Imaging, Enschede, Netherlands
关键词
deep learning; myocardial strain; young adults; risk factors; cardiac MRI; left ventricular dysfunction; TYPE-2; DIABETES-MELLITUS; HEART-FAILURE; DEFORMATION; STRAIN; MRI; HYPERTENSION; MORTALITY; INSIGHTS;
D O I
10.3389/fcvm.2022.831080
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
PurposeTo evaluate if a fully-automatic deep learning method for myocardial strain analysis based on magnetic resonance imaging (MRI) cine images can detect asymptomatic dysfunction in young adults with cardiac risk factors. MethodsAn automated workflow termed DeepStrain was implemented using two U-Net models for segmentation and motion tracking. DeepStrain was trained and tested using short-axis cine-MRI images from healthy subjects and patients with cardiac disease. Subsequently, subjects aged 18-45 years were prospectively recruited and classified among age- and gender-matched groups: risk factor group (RFG) 1 including overweight without hypertension or type 2 diabetes; RFG2 including hypertension without type 2 diabetes, regardless of overweight; RFG3 including type 2 diabetes, regardless of overweight or hypertension. Subjects underwent cardiac short-axis cine-MRI image acquisition. Differences in DeepStrain-based left ventricular global circumferential and radial strain and strain rate among groups were evaluated. ResultsThe cohort consisted of 119 participants: 30 controls, 39 in RFG1, 30 in RFG2, and 20 in RFG3. Despite comparable (>0.05) left-ventricular mass, volumes, and ejection fraction, all groups (RFG1, RFG2, RFG3) showed signs of asymptomatic left ventricular diastolic and systolic dysfunction, evidenced by lower circumferential early-diastolic strain rate (<0.05, <0.001, <0.01), and lower septal circumferential end-systolic strain (<0.001, <0.05, <0.001) compared with controls. Multivariate linear regression showed that body surface area correlated negatively with all strain measures (<0.01), and mean arterial pressure correlated negatively with early-diastolic strain rate (<0.01). ConclusionDeepStrain fully-automatically provided evidence of asymptomatic left ventricular diastolic and systolic dysfunction in asymptomatic young adults with overweight, hypertension, and type 2 diabetes risk factors.
引用
收藏
页数:10
相关论文
共 34 条
[21]   Implementation and Validation of a Three-dimensional Cardiac Motion Estimation Network [J].
Morales, Manuel A. ;
Izquierdo-Garcia, David ;
Aganj, Iman ;
Kalpathy-Cramer, Jayashree ;
Rosen, Bruce R. ;
Catana, Ciprian .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2019, 1 (04)
[22]   Relationships of left ventricular strain and strain rate to wall stress and their afterload dependency [J].
Murai, Daisuke ;
Yamada, Satoshi ;
Hayashi, Taichi ;
Okada, Kazunori ;
Nishino, Hisao ;
Nakabachi, Masahiro ;
Yokoyama, Shinobu ;
Abe, Ayumu ;
Ichikawa, Ayako ;
Ono, Kota ;
Kaga, Sanae ;
Iwano, Hiroyuki ;
Mikami, Taisei ;
Tsutsui, Hiroyuki .
HEART AND VESSELS, 2017, 32 (05) :574-583
[23]   Defining Subclinical Myocardial Dysfunction and Implications for Patients With Diabetes Mellitus and Preserved Ejection Fraction [J].
Ng, Arnold C. T. ;
Bertini, Matteo ;
Ewe, See Hooi ;
van der Velde, Enno T. ;
Leung, Dominic Y. ;
Delgado, Victoria ;
Bax, Jeroen J. .
AMERICAN JOURNAL OF CARDIOLOGY, 2019, 124 (06) :892-898
[24]   Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms [J].
Petrie, John R. ;
Guzik, Tomasz J. ;
Touyz, Rhian M. .
CANADIAN JOURNAL OF CARDIOLOGY, 2018, 34 (05) :575-584
[25]   Cardiac MRI reference values for athletes and nonathletes corrected for body surface area, training hours/week and sex [J].
Prakken, Niek H. ;
Velthuis, Birgitta K. ;
Teske, Arco J. ;
Mosterd, Arend ;
Mali, Willem P. ;
Cramer, Maarten J. .
EUROPEAN JOURNAL OF CARDIOVASCULAR PREVENTION & REHABILITATION, 2010, 17 (02) :198-203
[26]   Asymptomatic Left Ventricle Systolic Dysfunction [J].
Sara, Jaskanwal D. ;
Toya, Takumi ;
Taher, Riad ;
Lerman, Amir ;
Gersh, Bernard ;
Anavekar, Nandan S. .
EUROPEAN CARDIOLOGY REVIEW, 2020, 15 :80-85
[27]   Role of Cardiac MRI in Diabetes [J].
Shah, Ravi V. ;
Abbasi, Siddique A. ;
Kwong, Raymond Y. .
CURRENT CARDIOLOGY REPORTS, 2014, 16 (02)
[28]   Layer-specific systolic and diastolic strain in hypertensive patients with and without mild diastolic dysfunction [J].
Sharif H. ;
Ting S. ;
Forsythe L. ;
McGregor G. ;
Banerjee P. ;
O’Leary D. ;
Ditor D. ;
George K. ;
Zehnder D. ;
Oxborough D. .
Echo Research & Practice, 2018, 5 (1) :41-49
[29]   Benchmarking framework for myocardial tracking and deformation algorithms: An open access database [J].
Tobon-Gomez, C. ;
De Craene, M. ;
McLeod, K. ;
Tautz, L. ;
Shi, W. ;
Hennemuth, A. ;
Prakosa, A. ;
Wang, H. ;
Carr-White, G. ;
Kapetanakis, S. ;
Lutz, A. ;
Rasche, V. ;
Schaeffter, T. ;
Butakoff, C. ;
Friman, O. ;
Mansi, T. ;
Sermesant, M. ;
Zhuang, X. ;
Ourselin, S. ;
Peitgen, H-O. ;
Pennec, X. ;
Razavi, R. ;
Rueckert, D. ;
Frangi, A. F. ;
Rhode, K. S. .
MEDICAL IMAGE ANALYSIS, 2013, 17 (06) :632-648
[30]   Technical challenges of imaging & image-guided interventions in obese patients [J].
Uppot, Raul N. .
BRITISH JOURNAL OF RADIOLOGY, 2018, 91 (1089)