Necessary and sufficient conditions for the nonexistence of limit cycles of Leslie-Gower predator-prey models

被引:4
|
作者
Zhang Daoxiang [1 ,3 ]
Ping Yan [2 ,3 ]
机构
[1] Anhui Normal Univ, Sch Math & Comp Sci, Wuhu 241002, Anhui, Peoples R China
[2] Zhejiang A&F Univ, Sch Sci, Hangzhou 311300, Zhejiang, Peoples R China
[3] Univ Helsinki, Dept Math & Stat, POB 68, FIN-00014 Helsinki, Finland
基金
芬兰科学院;
关键词
Leslie-Gower; Limit cycle; Geometric criterion; Dulac theorem; Predator-prey system; STOCHASTIC MODEL; SYSTEMS;
D O I
10.1016/j.aml.2017.03.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a predator-prey model with Leslie Gower functional response. We present the necessary and sufficient conditions for the nonexistence of limit cycles by the application of the generalized Dulac theorem. As a result, we give the necessary and sufficient conditions for which the local asymptotic stability of the positive equilibrium implies the global stability for this model. Our results extend and improve the results presented by Aghajani and Moradifam (2006) and Hsu and Huang (1995). (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [31] DYNAMICS OF A DIFFUSIVE LESLIE-GOWER PREDATOR-PREY MODEL IN SPATIALLY HETEROGENEOUS ENVIRONMENT
    Zou, Rong
    Guo, Shangjiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (11): : 4189 - 4210
  • [32] The Impact of Allee Effect on a Leslie-Gower Predator-Prey Model with Hunting Cooperation
    Liu, Yingzi
    Zhang, Zhiyang
    Li, Zhong
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (02)
  • [33] Fear Effect on a Modified Leslie-Gower Predator-Prey Model with Disease Transmission in Prey Population
    Purnomo, Anna Silvia
    Darti, Isnani
    Suryanto, Agus
    Kusumawinahyu, Wuryansari Muharini
    ENGINEERING LETTERS, 2023, 31 (02)
  • [34] Qualitative Analysis of a Modified Leslie-Gower Predator-prey Model with Weak Allee Effect II
    Singh, Manoj Kumar
    Bhadauria, B. S.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2019, 14 (01): : 139 - 163
  • [35] Stability and global Hopf bifurcation in a Leslie-Gower predator-prey model with stage structure for prey
    Meng, Xin-You
    Huo, Hai-Feng
    Zhang, Xiao-Bing
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2019, 60 (1-2) : 1 - 25
  • [36] The Effect of Delay on A Diffusive Predator-Prey System with Modified Leslie-Gower Functional Response
    Yang, Ruizhi
    Wei, Junjie
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2017, 40 (01) : 51 - 73
  • [37] Multiple limit cycles in a Leslie-Gower-type predator-prey model considering weak Allee effect on prey
    Gonzalez-Olivares, Eduardo
    Rojas-Palma, Alejandro
    Gonzalez-Yanez, Betsabe
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2017, 22 (03): : 347 - 365
  • [38] Bifurcation analysis of modified Leslie-Gower predator-prey model with double Allee effect
    Singh, Manoj Kumar
    Bhadauria, B. S.
    Singh, Brajesh Kumar
    AIN SHAMS ENGINEERING JOURNAL, 2018, 9 (04) : 1263 - 1277
  • [39] Dynamic analysis of a Leslie-Gower predator-prey model with the fear effect and nonlinear harvesting
    Wu, Hongqiuxue
    Li, Zhong
    He, Mengxin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (10) : 18592 - 18629
  • [40] Positive solutions of a diffusive Leslie-Gower predator-prey model with Bazykin functional response
    Zhou, Jun
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (01): : 1 - 18