Necessary and sufficient conditions for the nonexistence of limit cycles of Leslie-Gower predator-prey models

被引:4
|
作者
Zhang Daoxiang [1 ,3 ]
Ping Yan [2 ,3 ]
机构
[1] Anhui Normal Univ, Sch Math & Comp Sci, Wuhu 241002, Anhui, Peoples R China
[2] Zhejiang A&F Univ, Sch Sci, Hangzhou 311300, Zhejiang, Peoples R China
[3] Univ Helsinki, Dept Math & Stat, POB 68, FIN-00014 Helsinki, Finland
基金
芬兰科学院;
关键词
Leslie-Gower; Limit cycle; Geometric criterion; Dulac theorem; Predator-prey system; STOCHASTIC MODEL; SYSTEMS;
D O I
10.1016/j.aml.2017.03.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a predator-prey model with Leslie Gower functional response. We present the necessary and sufficient conditions for the nonexistence of limit cycles by the application of the generalized Dulac theorem. As a result, we give the necessary and sufficient conditions for which the local asymptotic stability of the positive equilibrium implies the global stability for this model. Our results extend and improve the results presented by Aghajani and Moradifam (2006) and Hsu and Huang (1995). (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [21] Modeling Allee Effect in the Leslie-Gower Predator-Prey System Incorporating a Prey Refuge
    Yin, Wenqi
    Li, Zhong
    Chen, Fengde
    He, Mengxin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (06):
  • [22] Nonexistence of limit cycles in two classes of predator-prey systems
    Aghajani, A.
    Moradifam, A.
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 175 (01) : 356 - 365
  • [23] Global dynamics of a Leslie-Gower predator-prey model with square root response function
    He, Mengxin
    Li, Zhong
    APPLIED MATHEMATICS LETTERS, 2023, 140
  • [24] Global Dynamics and Integrability of a Leslie-Gower Predator-Prey Model with Linear Functional Response and Generalist Predator
    Alvarez-Ramirez, Martha
    Garcia-Saldana, Johanna D.
    Medina, Mario
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (SUPPL 1)
  • [25] Stability and Hopf bifurcation analysis on a delayed Leslie-Gower predator-prey system incorporating a prey refuge
    Li, Yongkun
    Li, Changzhao
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4576 - 4589
  • [26] Qualitative analysis of the dynamics of a modified Leslie-Gower predator-prey model with difussion
    Duque, Cosme
    Rosales, Richard
    Sivoli, Zoraida
    CIENCIA E INGENIERIA, 2023, 44 (03): : 367 - 376
  • [27] Global dynamics of a Leslie-Gower predator-prey model in open advective environments
    Zhang, Baifeng
    Zhang, Guohong
    Wang, Xiaoli
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2024, 17 (03)
  • [28] Coexistence states for a modified Leslie-Gower type predator-prey model with diffusion
    Shi, Hong-Bo
    Li, Yan
    ADVANCES IN DIFFERENCE EQUATIONS, 2012,
  • [29] Global Hopf bifurcation in the Leslie-Gower predator-prey model with two delays
    Ma, Yongfeng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (01) : 370 - 375
  • [30] Spatiotemporal Complexity of a Leslie-Gower Predator-Prey Model with the Weak Allee Effect
    Cai, Yongli
    Zhao, Caidi
    Wang, Weiming
    JOURNAL OF APPLIED MATHEMATICS, 2013,