Multiple positive solutions for a Schrodinger-Poisson-Slater system

被引:61
作者
Siciliano, Gaetano [1 ]
机构
[1] Univ Granada, Dpto Anal Matemat, E-18071 Granada, Spain
关键词
Schrodinger-Poisson system; Lusternik-Schnirelmann category; Multiplicity result; MAXWELL EQUATIONS; BOUND-STATES; SEMICLASSICAL STATES; ELLIPTIC PROBLEMS; DOMAIN TOPOLOGY; EXISTENCE; EXPONENT;
D O I
10.1016/j.jmaa.2009.10.061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the existence of positive solutions to the following Schrodinger-Poisson-Slater system {-Delta u + u + lambda phi u = vertical bar u vertical bar(p-2)u in Omega, -Delta phi = u(2) in Omega, u = phi = 0 on partial derivative Omega, where Omega is a bounded domain in R-3, lambda is a fixed positive parameter nd p < 2* = 2N/N-2' We prove that if p is "near" the critical Sobolev exponent 2*, then the number of positive solutions is greater then the Lusternik-Schnirelmann category of Omega. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:288 / 299
页数:12
相关论文
共 29 条
[11]   EXISTENCE AND MULTIPLICITY RESULTS FOR SEMILINEAR ELLIPTIC DIRICHLET PROBLEMS IN EXTERIOR DOMAINS [J].
CERAMI, G ;
PASSASEO, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 24 (11) :1533-1547
[12]  
Coclite G.M., 2003, Commun. Appl. Anal, V7, P417
[13]   On bound states concentrating on spheres for the Maxwell-Schrodinger equation [J].
D'Aprile, T ;
Wei, JC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (01) :321-342
[14]   Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrodinger-Maxwell equations [J].
D'Aprile, T ;
Mugnai, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 :893-906
[15]  
d'Avenia P, 2002, ADV NONLINEAR STUD, V2, P177
[16]   Semi-classical states for nonlinear Schrodinger equations [J].
delPino, M ;
Felmer, PL .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 149 (01) :245-265
[17]  
Ianni I, 2008, ADV NONLINEAR STUD, V8, P573
[18]   CATEGORY, IN THE SENSE OF LUSTERNIK-SCHNIRELMANN [J].
JAMES, IM .
TOPOLOGY, 1978, 17 (04) :331-348
[19]   On the existence of a solution for elliptic system related to the Maxwell-Schrodinger equations [J].
Kikuchi, Hiroaki .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (05) :1445-1456
[20]  
Passaseo D., 1993, TOPOL METHOD NONL AN, V2, P343, DOI [10.12775/TMNA.1993.047, DOI 10.12775/TMNA.1993.047]