Multiple positive solutions for a Schrodinger-Poisson-Slater system

被引:60
作者
Siciliano, Gaetano [1 ]
机构
[1] Univ Granada, Dpto Anal Matemat, E-18071 Granada, Spain
关键词
Schrodinger-Poisson system; Lusternik-Schnirelmann category; Multiplicity result; MAXWELL EQUATIONS; BOUND-STATES; SEMICLASSICAL STATES; ELLIPTIC PROBLEMS; DOMAIN TOPOLOGY; EXISTENCE; EXPONENT;
D O I
10.1016/j.jmaa.2009.10.061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the existence of positive solutions to the following Schrodinger-Poisson-Slater system {-Delta u + u + lambda phi u = vertical bar u vertical bar(p-2)u in Omega, -Delta phi = u(2) in Omega, u = phi = 0 on partial derivative Omega, where Omega is a bounded domain in R-3, lambda is a fixed positive parameter nd p < 2* = 2N/N-2' We prove that if p is "near" the critical Sobolev exponent 2*, then the number of positive solutions is greater then the Lusternik-Schnirelmann category of Omega. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:288 / 299
页数:12
相关论文
共 29 条
[1]   Multiple bound states for the Schrodinger-Poisson problem [J].
Ambrosetti, Antonio ;
Ruiz, David .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (03) :391-404
[2]  
[Anonymous], 1996, VARIATIONAL METHODS, DOI DOI 10.1007/978-3-662-03212-1
[3]  
[Anonymous], CAMBRIDGE STUD ADV M
[4]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[5]   THE EFFECT OF THE DOMAIN TOPOLOGY ON THE NUMBER OF POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC PROBLEMS [J].
BENCI, V ;
CERAMI, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1991, 114 (01) :79-93
[6]   MULTIPLE POSITIVE SOLUTIONS OF SOME ELLIPTIC PROBLEMS VIA THE MORSE-THEORY AND THE DOMAIN TOPOLOGY [J].
BENCI, V ;
CERAMI, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1994, 2 (01) :29-48
[7]  
Benci V., 1998, TOPOL METHOD NONL AN, V11, P283
[8]  
BENCI V, 1991, SC NORM SUPER PISA Q, P93
[9]  
Bleecker D., 2005, GAUGE THEORY VARIATI
[10]   On an exchange interaction model for quantum transport:: The Schrodinger-Poisson-Slater system [J].
Bokanowski, O ;
López, JL ;
Soler, J .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (10) :1397-1412