Soil Moisture Data Assimilation to Estimate Irrigation Water Use

被引:52
作者
Abolafia-Rosenzweig, R. [1 ]
Livneh, B. [1 ,2 ]
Small, E. E. [3 ]
Kumar, S. V. [4 ]
机构
[1] Univ Colorado, Dept Civil Environm & Architectural Engn, Boulder, CO 80309 USA
[2] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[3] Univ Colorado, Geol Sci, Boulder, CO 80309 USA
[4] NASA, Hydrol Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD USA
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
irrigation; data assimilation; soil moisture; particle batch smoother; remote sensing; land surface model; PARTICLE BATCH SMOOTHER; LAND DATA; GROUNDWATER DEPLETION; USE EFFICIENCY; HIGH-PLAINS; MODEL; VALIDATION; RESOLUTION; AREAS; SYSTEM;
D O I
10.1029/2019MS001797
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Knowledge of irrigation is essential to support food security, manage depleting water resources, and comprehensively understand the global water and energy cycles. Despite the importance of understanding irrigation, little consistent information exists on the amount of water that is applied for irrigation. In this study, we develop and evaluate a new method to predict daily to seasonal irrigation magnitude using a particle batch smoother data assimilation approach, where land surface model soil moisture is applied in different configurations to understand how characteristics of remotely sensed soil moisture may impact the performance of the method. The study employs a suite of synthetic data assimilation experiments, allowing for systematic diagnosis of known error sources. Assimilation of daily synthetic soil moisture observations with zero noise produces irrigation estimates with a seasonal bias of 0.66% and a correlation of 0.95 relative to a known truth irrigation. When synthetic observations were subjected to an irregular overpass interval and random noise similar to the Soil Moisture Active Passive satellite (0.04 cm(3) cm(-3)), irrigation estimates produced a median seasonal bias of <1% and a correlation of 0.69. When systematic biases commensurate with those between NLDAS-2 land surface models and Soil Moisture Active Passive are imposed, irrigation estimates show larger biases. In this application, the particle batch smoother outperformed the particle filter. The presented framework has the potential to provide new information into irrigation magnitude over spatially continuous domains, yet its broad applicability is contingent upon identifying new method(s) of determining irrigation schedule and correcting biases between observed and simulated soil moisture, as these errors markedly degraded performance.
引用
收藏
页码:3670 / 3690
页数:21
相关论文
共 98 条
[1]   Remotely sensed high resolution irrigated area mapping in India for 2000 to 2015 [J].
Ambika, Anukesh Krishnankutty ;
Wardlow, Brian ;
Mishra, Vimal .
SCIENTIFIC DATA, 2016, 3
[2]   Climate response to Amazon forest replacement by heterogeneous crop cover [J].
Badger, A. M. ;
Dirmeyer, P. A. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2015, 19 (11) :4547-4557
[3]   Direct human influence of irrigation on atmospheric water vapour and climate [J].
Boucher, O ;
Myhre, G ;
Myhre, A .
CLIMATE DYNAMICS, 2004, 22 (6-7) :597-603
[4]   Soil Moisture and Irrigation Mapping in A Semi-Arid Region, Based on the Synergetic Use of Sentinel-1 and Sentinel-2 Data [J].
Bousbih, Safa ;
Zribi, Mehrez ;
El Hajj, Mohammad ;
Baghdadi, Nicolas ;
Lili-Chabaane, Zohra ;
Gao, Qi ;
Fanise, Pascal .
REMOTE SENSING, 2018, 10 (12)
[5]   How much water is used for irrigation? A new approach exploiting coarse resolution satellite soil moisture products [J].
Brocca, Luca ;
Tarpanelli, Angelica ;
Filippucci, Paolo ;
Dorigo, Wouter ;
Zaussinger, Felix ;
Gruber, Alexander ;
Fernandez-Prieto, Diego .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 73 :752-766
[6]   Development and assessment of the SMAP enhanced passive soil moisture product [J].
Chan, S. K. ;
Bindlish, R. ;
O'Neill, P. ;
Jackson, T. ;
Njoku, E. ;
Dunbar, S. ;
Chaubell, J. ;
Piepmeier, J. ;
Yueh, S. ;
Entekhabi, D. ;
Colliander, A. ;
Chen, F. ;
Cosh, M. H. ;
Caldwell, T. ;
Walker, J. ;
Berg, A. ;
McNairn, H. ;
Thibeault, M. ;
Martinez-Fernandez, J. ;
Uldall, F. ;
Seyfried, M. ;
Bosch, D. ;
Starks, P. ;
Collins, C. Holifield ;
Prueger, J. ;
van der Velde, R. ;
Asanuma, J. ;
Palecki, M. ;
Small, E. E. ;
Zreda, M. ;
Calvet, J. ;
Crow, W. T. ;
Kerr, Y. .
REMOTE SENSING OF ENVIRONMENT, 2018, 204 :931-941
[7]   Global-scale evaluation of SMAP, SMOS and ASCAT soil moisture products using triple collocation [J].
Chen, Fan ;
Crow, Wade T. ;
Bindlish, Rajat ;
Colliander, Andreas ;
Burgin, Mariko S. ;
Asanuma, Jun ;
Aida, Kentaro .
REMOTE SENSING OF ENVIRONMENT, 2018, 214 :1-13
[8]   Validation of SMAP surface soil moisture products with core validation sites [J].
Colliander, A. ;
Jackson, T. J. ;
Bindlish, R. ;
Chan, S. ;
Das, N. ;
Kim, S. B. ;
Cosh, M. H. ;
Dunbar, R. S. ;
Dang, L. ;
Pashaian, L. ;
Asanuma, J. ;
Aida, K. ;
Berg, A. ;
Rowlandson, T. ;
Bosch, D. ;
Caldwell, T. ;
Caylor, K. ;
Goodrich, D. ;
al Jassar, H. ;
Lopez-Baeza, E. ;
Martinez-Fernandez, J. ;
Gonzalez-Zamora, A. ;
Livingston, S. ;
McNairn, H. ;
Pacheco, A. ;
Moghaddam, M. ;
Montzka, C. ;
Notarnicola, C. ;
Niedrist, G. ;
Pellarin, T. ;
Prueger, J. ;
Pulliainen, J. ;
Rautiainen, K. ;
Ramos, J. ;
Seyfried, M. ;
Starks, P. ;
Su, Z. ;
Zeng, Y. ;
van der Velde, R. ;
Thibeault, M. ;
Dorigo, W. ;
Vreugdenhil, M. ;
Walker, J. P. ;
Wu, X. ;
Monerris, A. ;
O'Neill, P. E. ;
Entekhabi, D. ;
Njoku, E. G. ;
Yueh, S. .
REMOTE SENSING OF ENVIRONMENT, 2017, 191 :215-231
[9]   Correcting rainfall using satellite-based surface soil moisture retrievals: The Soil Moisture Analysis Rainfall Tool (SMART) [J].
Crow, W. T. ;
van den Berg, M. J. ;
Huffman, G. J. ;
Pellarin, T. .
WATER RESOURCES RESEARCH, 2011, 47
[10]   Estimating precipitation errors using spaceborne surface soil moisture retrievals [J].
Crow, W. T. ;
Bolten, J. D. .
GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (08)