The transport and quantum capacitance properties of epitaxial graphene

被引:28
作者
Xia, J. L. [1 ]
Chen, Fang [1 ]
Tedesco, J. L.
Gaskill, D. K.
Myers-Ward, R. L.
Eddy, C. R., Jr.
Ferry, D. K. [2 ]
Tao, N. J. [1 ,2 ]
机构
[1] Arizona State Univ, Dept Elect Engn, Biodesign Inst, Ctr Bioelect & Biosensors, Tempe, AZ 85287 USA
[2] Arizona State Univ, Dept Elect Engn, Ctr Solid State Elect Res, Tempe, AZ 85287 USA
关键词
TRANSISTORS;
D O I
10.1063/1.3396982
中图分类号
O59 [应用物理学];
学科分类号
摘要
Epitaxial graphene field effect transistors were fabricated, characterized, and studied. Both the capacitance and transport measurements were performed on the same devices using an electrochemical gate. The quantum capacitance of the epitaxial graphene was extracted, which was similar to that of exfoliated graphene near the Dirac point, but it exhibits a large sublinear behavior at high carrier densities. The recently developed self-consistent theory for charged impurities in graphene is found to provide a reasonable description of the transport data, but a more complete theory is needed to explain both the transport and quantum capacitance data for the epitaxial graphene devices. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3396982]
引用
收藏
页数:3
相关论文
共 50 条
[21]   Effects of substrate orientation on the structural and electronic properties of epitaxial graphene on SiC(0001) [J].
Robinson, Joshua A. ;
Trumbull, Kathleen A. ;
LaBella, Michael, III ;
Cavalero, Randall ;
Hollander, Matthew J. ;
Zhu, Michael ;
Wetherington, Maxwell T. ;
Fanton, Mark ;
Snyder, David W. .
APPLIED PHYSICS LETTERS, 2011, 98 (22)
[22]   Epitaxial Graphene Materials Integration: Effects of Dielectric Overlayers on Structural and Electronic Properties [J].
Robinson, Joshua A. ;
LaBella, Michael, III ;
Trumbull, Kathleen A. ;
Weng, Xiaojun ;
Cavelero, Randall ;
Daniels, Tad ;
Hughes, Zachary ;
Hollander, Mathew ;
Fanton, Mark ;
Snyder, David .
ACS NANO, 2010, 4 (05) :2667-2672
[23]   Spin-resolved quantum transport in graphene-based nanojunctions [J].
Li, Jian-Wei ;
Wang, Bin ;
Yu, Yun-Jin ;
Wei, Ya-Dong ;
Yu, Zhi-Zhou ;
Wang, Yin .
FRONTIERS OF PHYSICS, 2017, 12 (04)
[24]   Atomistic quantum transport modeling of metal-graphene nanoribbon heterojunctions [J].
Deretzis, I. ;
Fiori, G. ;
Iannaccone, G. ;
La Magna, A. .
PHYSICAL REVIEW B, 2010, 82 (16)
[25]   Epitaxial graphene on silicon carbide: Introduction to structured graphene [J].
Ruan, Ming ;
Hu, Yike ;
Guo, Zelei ;
Dong, Rui ;
Palmer, James ;
Hankinson, John ;
Berger, Claire ;
de Heer, Walt A. .
MRS BULLETIN, 2012, 37 (12) :1138-1147
[26]   Ultrafast van der Waals diode using graphene quantum capacitance and Fermi-level depinning [J].
Hong, Sungjae ;
Hong, Chang-Ui ;
Lee, Sol ;
Jang, Myeongjin ;
Jang, Chorom ;
Lee, Yangjin ;
Widiapradja, Livia Janice ;
Park, Sam ;
Kim, Kwanpyo ;
Son, Young-Woo ;
Yook, Jong-Gwan ;
Im, Seongil .
SCIENCE ADVANCES, 2023, 9 (29)
[27]   Molecular alignment on graphene surface determines transport properties of graphene/organic semiconductor transistors [J].
Tkachuk, Vadym ;
Pavlica, Egon ;
Bratina, Gvido .
ORGANIC ELECTRONICS, 2020, 87 (87)
[28]   Epitaxial graphene on 3C-SiC(111) pseudosubstrate: Structural and electronic properties [J].
Ouerghi, A. ;
Marangolo, M. ;
Belkhou, R. ;
El Moussaoui, S. ;
Silly, M. G. ;
Eddrief, M. ;
Largeau, L. ;
Portail, M. ;
Fain, B. ;
Sirotti, F. .
PHYSICAL REVIEW B, 2010, 82 (12)
[29]   Computational Study of Edge Configuration and Quantum Confinement Effects on Graphene Nanoribbon Transport [J].
Sako, Ryutaro ;
Hosokawa, Hiroshi ;
Tsuchiya, Hideaki .
IEEE ELECTRON DEVICE LETTERS, 2011, 32 (01) :6-8
[30]   Epitaxial graphene FETs on sapphire substrate [J].
Liu, Q. B. ;
Yu, C. ;
Li, J. ;
He, Z. Z. ;
Song, X. B. ;
Lu, W. L. ;
Feng, Z. H. .
2014 IEEE INTERNATIONAL CONFERENCE ON ELECTRON DEVICES AND SOLID-STATE CIRCUITS (EDSSC), 2014,