Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor

被引:373
作者
Rodrik-Outmezguine, Vanessa S. [1 ]
Okaniwa, Masanori [2 ,3 ]
Yao, Zhan [1 ]
Novotny, Chris J. [2 ,3 ]
McWhirter, Claire [4 ]
Banaji, Arpitha [1 ]
Won, Helen [5 ]
Wong, Wai [6 ]
Berger, Mike [5 ]
de Stanchina, Elisa [6 ]
Barratt, Derek G. [4 ]
Cosulich, Sabina [4 ]
Klinowska, Teresa [4 ]
Rosen, Neal [1 ,7 ]
Shokat, Kevan M. [2 ,3 ,8 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Program Mol Pharmacol, New York, NY 10065 USA
[2] Univ Calif San Francisco, Howard Hughes Med Inst, San Francisco, CA 94158 USA
[3] Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA
[4] AstraZeneca, Alderley Pk, Macclesfield SK10 4TG, Cheshire, England
[5] Mem Sloan Kettering Canc Ctr, Human Oncol & Pathogenesis Program, New York, NY 10065 USA
[6] Mem Sloan Kettering Canc Ctr, Antitumor Assessment Core, New York, NY 10065 USA
[7] Mem Sloan Kettering Canc Ctr, Dept Med, New York, NY 10065 USA
[8] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
基金
美国国家卫生研究院;
关键词
PROTEIN; KINASE; EVEROLIMUS; PHOSPHORYLATION; FEEDBACK;
D O I
10.1038/nature17963
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Precision medicines exert selective pressure on tumour cells that leads to the preferential growth of resistant subpopulations, necessitating the development of next-generation therapies to treat the evolving cancer. The PIK3CA-AKT-mTOR pathway is one of the most commonly activated pathways in human cancers(1), which has led to the development of small-molecule inhibitors that target various nodes in the pathway. Among these agents, first-generation mTOR inhibitors (rapalogs) have caused responses in 'N-of-1' cases, and second-generation mTOR kinase inhibitors (TORKi) are currently in clinical trials(2-4). Here we sought to delineate the likely resistance mechanisms to existing mTOR inhibitors in human cell lines, as a guide for next-generation therapies. The mechanism of resistance to the TORKi was unusual in that intrinsic kinase activity of mTOR was increased, rather than a direct active-site mutation interfering with drug binding. Indeed, identical drug-resistant mutations have been also identified in drug-naive patients, suggesting that tumours with activating MTOR mutations will be intrinsically resistant to second-generation mTOR inhibitors. We report the development of a new class of mTOR inhibitors that overcomes resistance to existing first-and second-generation inhibitors. The third-generation mTOR inhibitor exploits the unique juxtaposition of two drug-binding pockets to create a bivalent interaction that allows inhibition of these resistant mutants.
引用
收藏
页码:272 / +
页数:18
相关论文
共 29 条
[1]  
[Anonymous], 2016, MOL OP ENV
[2]   First-in-Human Pharmacokinetic and Pharmacodynamic Study of the Dual m-TORC 1/2 Inhibitor AZD2014 [J].
Basu, Bristi ;
Dean, Emma ;
Puglisi, Martina ;
Greystoke, Alastair ;
Ong, Michael ;
Burke, Wendy ;
Cavallin, Maria ;
Bigley, Graham ;
Womack, Christopher ;
Harrington, Elizabeth A. ;
Green, Stephen ;
Oelmann, Elisabeth ;
de Bono, Johann S. ;
Ranson, Malcolm ;
Banerji, Udai .
CLINICAL CANCER RESEARCH, 2015, 21 (15) :3412-3419
[3]   A Raf-induced allosteric transition of KSR stimulates phosphorylation of MEK [J].
Brennan, Damian F. ;
Dar, Arvin C. ;
Hertz, Nicholas T. ;
Chao, William C. H. ;
Burlingame, Alma L. ;
Shokat, Kevan M. ;
Barford, David .
NATURE, 2011, 472 (7343) :366-U134
[4]   CONTROL OF P70 S6 KINASE BY KINASE-ACTIVITY OF FRAP IN-VIVO [J].
BROWN, EJ ;
BEAL, PA ;
KEITH, CT ;
CHEN, J ;
SHIN, TB ;
SCHREIBER, SL .
NATURE, 1995, 377 (6548) :441-446
[5]   The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data [J].
Cerami, Ethan ;
Gao, Jianjiong ;
Dogrusoz, Ugur ;
Gross, Benjamin E. ;
Sumer, Selcuk Onur ;
Aksoy, Buelent Arman ;
Jacobsen, Anders ;
Byrne, Caitlin J. ;
Heuer, Michael L. ;
Larsson, Erik ;
Antipin, Yevgeniy ;
Reva, Boris ;
Goldberg, Arthur P. ;
Sander, Chris ;
Schultz, Nikolaus .
CANCER DISCOVERY, 2012, 2 (05) :401-404
[6]   IDENTIFICATION OF AN 11-KDA FKBP12-RAPAMYCIN-BINDING DOMAIN WITHIN THE 289-KDA FKBP12-RAPAMYCIN-ASSOCIATED PROTEIN AND CHARACTERIZATION OF A CRITICAL SERINE RESIDUE [J].
CHEN, J ;
ZHENG, XF ;
BROWN, EJ ;
SCHREIBER, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (11) :4947-4951
[7]   Analysis of Kinase Inhibitor Selectivity using a Thermodynamics-Based Partition Index [J].
Cheng, Alan C. ;
Eksterowicz, John ;
Geuns-Meyer, Stephanie ;
Sun, Yaxiong .
JOURNAL OF MEDICINAL CHEMISTRY, 2010, 53 (11) :4502-4510
[8]   mTORC1-Mediated Cell Proliferation, But Not Cell Growth, Controlled by the 4E-BPs [J].
Dowling, Ryan J. O. ;
Topisirovic, Ivan ;
Alain, Tommy ;
Bidinosti, Michael ;
Fonseca, Bruno D. ;
Petroulakis, Emmanuel ;
Wang, Xiaoshan ;
Larsson, Ola ;
Selvaraj, Anand ;
Liu, Yi ;
Kozma, Sara C. ;
Thomas, George ;
Sonenberg, Nahum .
SCIENCE, 2010, 328 (5982) :1172-1176
[9]   Active-Site Inhibitors of mTOR Target Rapamycin-Resistant Outputs of mTORC1 and mTORC2 [J].
Feldman, Morris E. ;
Apsel, Beth ;
Uotila, Aino ;
Loewith, Robbie ;
Knight, Zachary A. ;
Ruggero, Davide ;
Shokat, Kevan M. .
PLOS BIOLOGY, 2009, 7 (02) :371-383
[10]   A Diverse Array of Cancer-Associated MTOR Mutations Are Hyperactivating and Can Predict Rapamycin Sensitivity [J].
Grabiner, Brian C. ;
Nardi, Valentina ;
Birsoy, Kivan ;
Possemato, Richard ;
Shen, Kuang ;
Sinha, Sumi ;
Jordan, Alexander ;
Beck, Andrew H. ;
Sabatini, David M. .
CANCER DISCOVERY, 2014, 4 (05) :554-563