Hierarchical HotNet: identifying hierarchies of altered subnetworks

被引:85
作者
Reyna, Matthew A. [1 ]
Leiserson, Mark D. M. [2 ]
Raphael, Benjamin J. [1 ]
机构
[1] Princeton Univ, Dept Comp Sci, Princeton, NJ 08540 USA
[2] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
NETWORK ANALYSIS; MUTUAL EXCLUSIVITY; CANCER; PATHWAYS; MUTATIONS; DISCOVERY; REVEALS; ALGORITHM; PAGERANK; GENETICS;
D O I
10.1093/bioinformatics/bty613
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The analysis of high-dimensional 'omics data is often informed by the use of biological interaction networks. For example, protein-protein interaction networks have been used to analyze gene expression data, to prioritize germline variants, and to identify somatic driver mutations in cancer. In these and other applications, the underlying computational problem is to identify altered subnetworks containing genes that are both highly altered in an 'omics dataset and are topologically close (e.g. connected) on an interaction network. Results: We introduce Hierarchical HotNet, an algorithm that finds a hierarchy of altered subnetworks. Hierarchical HotNet assesses the statistical significance of the resulting subnetworks over a range of biological scales and explicitly controls for ascertainment bias in the network. We evaluate the performance of Hierarchical HotNet and several other algorithms that identify altered subnetworks on the problem of predicting cancer genes and significantly mutated subnetworks. On somatic mutation data from The Cancer Genome Atlas, Hierarchical HotNet outperforms other methods and identifies significantly mutated subnetworks containing both well-known cancer genes and candidate cancer genes that are rarely mutated in the cohort. Hierarchical HotNet is a robust algorithm for identifying altered subnetworks across different 'omics datasets.
引用
收藏
页码:972 / 980
页数:9
相关论文
共 77 条
  • [1] [Anonymous], 2002, P 19 INT C MACH LEAR
  • [2] [Anonymous], 2004, Kernel methods in computational biology
  • [3] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [4] Sequence analysis of mutations and translocations across breast cancer subtypes
    Banerji, Shantanu
    Cibulskis, Kristian
    Rangel-Escareno, Claudia
    Brown, Kristin K.
    Carter, Scott L.
    Frederick, Abbie M.
    Lawrence, Michael S.
    Sivachenko, Andrey Y.
    Sougnez, Carrie
    Zou, Lihua
    Cortes, Maria L.
    Fernandez-Lopez, Juan C.
    Peng, Shouyong
    Ardlie, Kristin G.
    Auclair, Daniel
    Bautista-Pina, Veronica
    Duke, Fujiko
    Francis, Joshua
    Jung, Joonil
    Maffuz-Aziz, Antonio
    Onofrio, Robert C.
    Parkin, Melissa
    Pho, Nam H.
    Quintanar-Jurado, Valeria
    Ramos, Alex H.
    Rebollar-Vega, Rosa
    Rodriguez-Cuevas, Sergio
    Romero-Cordoba, Sandra L.
    Schumacher, Steven E.
    Stransky, Nicolas
    Thompson, Kristin M.
    Uribe-Figueroa, Laura
    Baselga, Jose
    Beroukhim, Rameen
    Polyak, Kornelia
    Sgroi, Dennis C.
    Richardson, Andrea L.
    Jimenez-Sanchez, Gerardo
    Lander, Eric S.
    Gabriel, Stacey B.
    Garraway, Levi A.
    Golub, Todd R.
    Melendez-Zajgla, Jorge
    Toker, Alex
    Getz, Gad
    Hidalgo-Miranda, Alfredo
    Meyerson, Matthew
    [J]. NATURE, 2012, 486 (7403) : 405 - 409
  • [5] BioNet: an R-Package for the functional analysis of biological networks
    Beisser, Daniela
    Klau, Gunnar W.
    Dandekar, Thomas
    Muller, Tobias
    Dittrich, Marcus T.
    [J]. BIOINFORMATICS, 2010, 26 (08) : 1129 - 1130
  • [6] A Sequential Importance Sampling Algorithm for Generating Random Graphs with Prescribed Degrees
    Blitzstein, Joseph
    Diaconis, Persi
    [J]. INTERNET MATHEMATICS, 2011, 6 (04) : 489 - 522
  • [7] Leveraging models of cell regulation and GWAS data in integrative network-based association studies
    Califano, Andrea
    Butte, Atul J.
    Friend, Stephen
    Ideker, Trey
    Schadt, Eric
    [J]. NATURE GENETICS, 2012, 44 (08) : 841 - 847
  • [8] Amelioration of IFN-γ and TNF-α-Induced Intestinal Epithelial Barrier Dysfunction by Berberine via Suppression of MLCK-MLC Phosphorylation Signaling Pathway
    Cao, Min
    Wang, Pei
    Sun, Chunhong
    He, Wen
    Wang, Fengjun
    [J]. PLOS ONE, 2013, 8 (05):
  • [9] BAP1 and cancer
    Carbone, Michele
    Yang, Haining
    Pass, Harvey I.
    Krausz, Thomas
    Testa, Joseph R.
    Gaudino, Giovanni
    [J]. NATURE REVIEWS CANCER, 2013, 13 (03) : 153 - 159
  • [10] MUFFINN: cancer gene discovery via network analysis of somatic mutation data
    Cho, Ara
    Shim, Jung Eun
    Kim, Eiru
    Supek, Fran
    Lehner, Ben
    Lee, Insuk
    [J]. GENOME BIOLOGY, 2016, 17