Diagnostic accuracy study of automated stratification of Alzheimer's disease and mild cognitive impairment via deep learning based on MRI

被引:6
作者
Chen, Xiaowen [1 ]
Tang, Mingyue [2 ]
Liu, Aimin [1 ]
Wei, Xiaoqin [1 ]
机构
[1] North Sichuan Med Coll, Sch Med Imaging, 234 Fujiang Rd, Nanchong 637000, Peoples R China
[2] North Sichuan Med Coll, Sch Basic Med & Forens Med, Nanchong, Peoples R China
关键词
Alzheimer's disease (AD); functional magnetic resonance imaging (functional MRI); deep convolutional neural networks (deep CNN); iterated random forest (iterated RF); Alzheimer's Disease Neuroimaging Initiative (ADNI); CLASSIFICATION; PREDICTION;
D O I
10.21037/atm-22-2961
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Alzheimer's disease (AD) is a widespread neurodegenerative disease that mostly affects the elderly population. Given its prevalence, a precise and efficient stratification system based on AD symptomology that uses functional magnetic resonance imaging (MRI) has great potential in the clinical diagnosis and prognosis estimation of AD patients. It was evident that deep learning methods have performed extremely well in the field of automated stratification of Al) based on MRI because of their high predicting accuracy and reliability. Methods: We proposed a deep convolutional neural network (CNN) and iterated random forest (RF) architecture for MRI image stratification by both anatomical location and image modality using the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We employed 3 cross-sectional data sets from the ADNI to conduct our binary-stratification [AD and normal controls (NCs), or AD and mild cognitive impairment (MCI)], and multi-stratification (AD, MCI, and NCs) process using MRI. And the accuracy, recall, specificity, area under the curve of receiver operating characteristic curve (AUC), Fl and Matthew's correlation coefficient (MCC) scores to assess accuracy of auxiliary clinical diagnoses. Results: Compared to other combinations of algorithms, our model obtained remarkable overall stratification accuracies in all different classification sets. In terms of AD vs. MCI, the mean training AUC of the 3 runs were 85.1% in 95% confidence intervals (CIs). In terms of AD vs. NC, the mean training AUC of the 3 runs was 90.6% in 95% CIs. In terms of the 3 stratifications of AD, MCI, and NC, relative precision, recall, and specificity for each category in the training test (TS) were all near 89%, while the F1 and MCC scores of both sets were 59.9% and 59.5%, respectively. Conclusions: Using a deep CNN and iterated RF architecture, we showed that brain image stratification is a promising means for evaluating AD, and examining the underlying etiology of the disease, by applying computer and medical images to achieve the early auxiliary diagnosis of AD. However, we still have a long way to go from the discovery of image markers to clinical application.
引用
收藏
页数:12
相关论文
共 43 条
[1]   Single and Combined Neuroimaging Techniques for Alzheimer's Disease Detection [J].
Amini, Morteza ;
Pedram, Mir Mohsen ;
Moradi, Alireza ;
Jamshidi, Mahdieh ;
Ouchani, Mahshad .
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
[2]   Multi-study validation of data-driven disease progression models to characterize evolution of biomarkers in Alzheimer's disease [J].
Archetti, Damiano ;
Ingala, Silvia ;
Venkatraghavan, Vikram ;
Wottschel, Viktor ;
Young, Alexandra L. ;
Bellio, Maura ;
Bron, Esther E. ;
Klein, Stefan ;
Barkhof, Frederik ;
Alexander, Daniel C. ;
Oxtoby, Neil P. ;
Frisonif, Giovanni B. ;
Redolfi, Alberto .
NEUROIMAGE-CLINICAL, 2019, 24
[3]   Voxel-Based Diagnosis of Alzheimer's Disease Using Classifier Ensembles [J].
Armananzas, Ruben ;
Iglesias, Martina ;
Morales, Dinora A. ;
Alonso-Nanclares, Lidia .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2017, 21 (03) :778-784
[4]   Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks [J].
Basaia, Silvia ;
Agosta, Federica ;
Wagner, Luca ;
Canu, Elisa ;
Magnani, Giuseppe ;
Santangelo, Roberto ;
Filippi, Massimo .
NEUROIMAGE-CLINICAL, 2019, 21
[5]  
Beckett L. A., 2013, Alzheimer's & Dementia, V9, P111
[6]   An Alzheimer's Disease-Derived Biomarker Signature Identifies Parkinson's Disease Patients with Dementia [J].
Berlyand, Yosef ;
Weintraub, Daniel ;
Xie, Sharon X. ;
Mellis, Ian A. ;
Doshi, Jimit ;
Rick, Jacqueline ;
McBride, Jennifer ;
Davatzikos, Christos ;
Shaw, Leslie M. ;
Hurtig, Howard ;
Trojanowski, John Q. ;
Chen-Plotkin, Alice S. .
PLOS ONE, 2016, 11 (01)
[7]   An artificial neural network model for clinical score prediction in Alzheimer disease using structural neuroimaging measures [J].
Bhagwat, Nikhil ;
Pipitone, Jon ;
Voineskos, Aristotle N. ;
Chakravarty, M. Mallar .
JOURNAL OF PSYCHIATRY & NEUROSCIENCE, 2019, 44 (04) :246-260
[8]  
Carro Eva, 2017, Alzheimers Dement (Amst), V8, P131, DOI 10.1016/j.dadm.2017.04.002
[9]   Biomarkers for the Early Detection and Progression of Alzheimer's Disease [J].
Counts, Scott E. ;
Ikonomovic, Milos D. ;
Mercado, Natosha ;
Vega, Irving E. ;
Mufson, Elliott J. .
NEUROTHERAPEUTICS, 2017, 14 (01) :35-53
[10]   Discriminative analysis of early Alzheimer's disease using multi-modal imaging and multi-level characterization with multi-classifier (M3) [J].
Dai, Zhengjia ;
Yan, Chaogan ;
Wang, Zhiqun ;
Wang, Jinhui ;
Xia, Mingrui ;
Li, Kuncheng ;
He, Yong .
NEUROIMAGE, 2012, 59 (03) :2187-2195