Medical visual question answering based on question-type reasoning and semantic space constraint

被引:11
|
作者
Wang, Meiling [1 ]
He, Xiaohai [1 ]
Liu, Luping [1 ]
Qing, Linbo [1 ]
Chen, Honggang [1 ]
Liu, Yan [2 ]
Ren, Chao [1 ]
机构
[1] Sichuan Univ, Coll Elect & Informat Engn, Chengdu 610065, Sichuan, Peoples R China
[2] Southwest Jiaotong Univ, Dept Neurol, Affiliated Hosp, Peoples Hosp 3, Chengdu, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Medical visual question answering; Question -type reasoning; Semantic space constraint; Attention mechanism; DYNAMIC MEMORY NETWORKS; LANGUAGE;
D O I
10.1016/j.artmed.2022.102346
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Medical visual question answering (Med-VQA) aims to accurately answer clinical questions about medical images. Despite its enormous potential for application in the medical domain, the current technology is still in its infancy. Compared with general visual question answering task, Med-VQA task involve more demanding challenges. First, clinical questions about medical images are usually diverse due to different clinicians and the complexity of diseases. Consequently, noise is inevitably introduced when extracting question features. Second, Med-VQA task have always been regarded as a classification problem for predefined answers, ignoring the relationships between candidate responses. Thus, the Med-VQA model pays equal attention to all candidate answers when predicting answers. In this paper, a novel Med-VQA framework is proposed to alleviate the abovementioned problems. Specifically, we employed a question-type reasoning module severally to closed-ended and open-ended questions, thereby extracting the important information contained in the questions through an attention mechanism and filtering the noise to extract more valuable question features. To take advantage of the relational information between answers, we designed a semantic constraint space to calculate the similarity between the answers and assign higher attention to answers with high correlation. To evaluate the effectiveness of the proposed method, extensive experiments were conducted on a public dataset, namely VQA-RAD. Experimental results showed that the proposed method achieved better performance compared to other the state-ofthe-art methods. The overall accuracy, closed-ended accuracy, and open-ended accuracy reached 74.1 %, 82.7 %, and 60.9 %, respectively. It is worth noting that the absolute accuracy of the proposed method improved by 5.5 % for closed-ended questions.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Medical Visual Question Answering via Conditional Reasoning
    Zhan, Li-Ming
    Liu, Bo
    Fan, Lu
    Chen, Jiaxin
    Wu, Xiao-Ming
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 2345 - 2354
  • [2] Semantic Relation Graph Reasoning Network for Visual Question Answering
    Lan, Hong
    Zhang, Pufen
    TWELFTH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING SYSTEMS, 2021, 11719
  • [3] Chain of Reasoning for Visual Question Answering
    Wu, Chenfei
    Liu, Jinlai
    Wang, Xiaojie
    Dong, Xuan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [4] Sequential Visual Reasoning for Visual Question Answering
    Liu, Jinlai
    Wu, Chenfei
    Wang, Xiaojie
    Dong, Xuan
    PROCEEDINGS OF 2018 5TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (CCIS), 2018, : 410 - 415
  • [5] Video Question Answering With Semantic Disentanglement and Reasoning
    Liu, Jin
    Wang, Guoxiang
    Xie, Jialong
    Zhou, Fengyu
    Xu, Huijuan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (05) : 3663 - 3673
  • [6] A Constraint Based Question Answering over Semantic Knowledge Base
    Vasudevan, Magesh
    Tripathy, B. K.
    COMPUTATIONAL INTELLIGENCE IN DATA MINING, CIDM, VOL 2, 2016, 411 : 121 - 131
  • [7] TYPE-AWARE MEDICAL VISUAL QUESTION ANSWERING
    Zhang, Anda
    Tao, Wei
    Li, Ziyan
    Wang, Haofen
    Zhang, Wenqiang
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4838 - 4842
  • [8] Medical Visual Question Answering via Conditional Reasoning and Contrastive Learning
    Liu, Bo
    Zhan, Li-Ming
    Xu, Li
    Wu, Xiao-Ming
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (05) : 1532 - 1545
  • [9] HAIR: Hierarchical Visual-Semantic Relational Reasoning for Video Question Answering
    Liu, Fei
    Liu, Jing
    Wang, Weining
    Lu, Hanqing
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 1678 - 1687
  • [10] Question-type Driven Question Generation
    Zhou, Wenjie
    Zhang, Minghua
    Wu, Yunfang
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 6032 - 6037