Nilpotency in left semi-braces

被引:4
作者
Catino, Francesco [1 ]
Cedo, Ferran [2 ]
Stefanelli, Paola [1 ]
机构
[1] Univ Salento, Dipartimento Matemat & Fis Ennio Giorgi, Via Provinciale, I-73100 Arnesano, Lecce, Italy
[2] Univ Autonoma Barcelona, Dept Matematiques, E-08193 Barcelona, Spain
关键词
Quantum Yang-Baxter equation; Set-theoretical solution; Brace; Semi-brace; Skew brace; SET-THEORETICAL SOLUTIONS; SKEW LEFT BRACES; BAXTER; PRODUCT; RINGS;
D O I
10.1016/j.jalgebra.2022.04.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce left and right series of left semi-braces. This allows to define left and right nilpotent left semi-braces. We study the structure of such semi-braces and generalize some results, known for skew left braces, to left semi-braces. We study the structure of left semi-braces B such that the set of additive idempotents E is an ideal of B. Finally we introduce the concept of a nilpotent left semi-brace and we show that the multiplicative group of such semi-braces is nilpotent. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:128 / 161
页数:34
相关论文
共 40 条
  • [1] Retractability of solutions to the Yang-Baxter equation and p-nilpotency of skew braces
    Acri, E.
    Lutowski, R.
    Vendramin, L.
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2020, 30 (01) : 91 - 115
  • [2] Skew braces of size pq
    Acri, E.
    Bonatto, M.
    [J]. COMMUNICATIONS IN ALGEBRA, 2020, 48 (05) : 1872 - 1881
  • [3] Asymmetric product of left braces and simplicity; new solutions of the Yang-Baxter equation
    Bachiller, D.
    Cedo, F.
    Jespers, E.
    Okninski, J.
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (08)
  • [4] ITERATED MATCHED PRODUCTS OF FINITE BRACES AND SIMPLICITY; NEW SOLUTIONS OF THE YANG-BAXTER EQUATION
    Bachiller, D.
    Cedo, F.
    Jespers, E.
    Okninski, J.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (07) : 4881 - 4907
  • [5] Solutions of the Yang-Baxter equation associated to skew left braces, with applications to racks
    Bachiller, David
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2018, 27 (08)
  • [6] Computing skew left braces of small orders
    Bardakov, Valeriy G.
    Neshchadim, Mikhail, V
    Yadav, Manoj K.
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2020, 30 (04) : 839 - 851
  • [7] PARTITION-FUNCTION OF 8-VERTEX LATTICE MODEL
    BAXTER, RJ
    [J]. ANNALS OF PHYSICS, 1972, 70 (01) : 193 - &
  • [8] Set-theoretic solutions to the Yang-Baxter equation and generalized semi-braces
    Catino, Francesco
    Colazzo, Ilaria
    Stefanelli, Paola
    [J]. FORUM MATHEMATICUM, 2021, 33 (03) : 757 - 772
  • [9] Inverse semi-braces and the Yang-Baxter equation
    Catino, Francesco
    Mazzotta, Marzia
    Stefanelli, Paola
    [J]. JOURNAL OF ALGEBRA, 2021, 573 : 576 - 619
  • [10] The Matched Product of the Solutions to the Yang-Baxter Equation of Finite Order
    Catino, Francesco
    Colazzo, Ilaria
    Stefanelli, Paola
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (02)