Low-Complexity Grouped Symbol-Level Precoding for MU-MISO Systems

被引:1
作者
Xiao, Zichao [1 ]
Liu, Rang [1 ]
Liu, Yang [1 ]
Li, Ming [1 ]
Liu, Oian [2 ]
机构
[1] Dalian Univ Technol, Sch Informat & Commun Engn, Dalian 116024, Liaoning, Peoples R China
[2] Dalian Univ Technol, Sch Comp Sci & Technol, Dalian 116024, Liaoning, Peoples R China
来源
2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM) | 2021年
基金
中国国家自然科学基金;
关键词
Symbol-level precoding (SLP); low-complexity design; multi-user multi-input single-output (MU-MISO); constructive interference (CI); OF-THE-ART; INTERFERENCE EXPLOITATION; OPTIMIZATION; DOWNLINK;
D O I
10.1109/GLOBECOM46510.2021.9685319
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Symbol-level precoding (SLP), which can convert the harmful multi-user interference (MUI) into beneficial signals, can significantly improve symbol error rate (SER) performance in multi-user communication systems. While enjoying symbolic gain, however, the complicated non-linear symbol-by-symbol SLP design suffers high computational complexity exponential with the number of users, which is unaffordable in realistic systems. In this paper, we propose a novel low-complexity grouped SLP (G-SLP) approach and develop an efficient design algorithm for a typical max-min fairness problem. This practical G-SLP strategy divides all users into several groups. SLP is utilized for the users within each group to convert intra-group MUI into constructive interference, meanwhile the inter-group MUI is also suppressed. In particular, we first use Lagrangian and Karush-Kuhn-Tucker (KKT) conditions to simplify the G-SLP design problem and then propose an iterative majorization-minimization (MM) based algorithm to solve it. Simulation results illustrate that the proposed G-SLP strategy dramatically reduces the computational complexity without causing significant performance loss compared with the traditional SLP scheme.
引用
收藏
页数:6
相关论文
共 16 条
[1]   Symbol-Level and Multicast Precoding for Multiuser Multiantenna Downlink: A State-of-the-Art, Classification, and Challenges [J].
Alodeh, Maha ;
Spano, Danilo ;
Kalantari, Ashkan ;
Tsinos, Christos G. ;
Christopoulos, Dimitrios ;
Chatzinotas, Symeon ;
Ottersten, Bjorn .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2018, 20 (03) :1733-1757
[2]   Constructive Multiuser Interference in Symbol Level Precoding for the MISO Downlink Channel [J].
Alodeh, Maha ;
Chatzinotas, Symeon ;
Ottersten, Bjoern .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (09) :2239-2252
[3]   Deep Learning Based Efficient Symbol-Level Precoding Design for MU-MISO Systems [J].
Bo, Zhu ;
Liu, Rang ;
Li, Ming ;
Liu, Qian .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (08) :8309-8313
[4]  
Boyd Stephen, 2004, Convex Optimization, DOI DOI 10.1017/CBO9780511804441
[5]   Power Minimizer Symbol-Level Precoding: A Closed-Form Suboptimal Solution [J].
Haqiqatnejad, Alireza ;
Kayhan, Farbod ;
Ottersten, Bjorn .
IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (11) :1730-1734
[6]   Interference Exploitation Precoding for Multi-Level Modulations: Closed-Form Solutions [J].
Li, Ang ;
Masouros, Christos ;
Vucetic, Branka ;
Li, Yonghui ;
Swindlehurst, A. Lee .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (01) :291-308
[7]   A Tutorial on Interference Exploitation via Symbol-Level Precoding: Overview, State-of-the-Art and Future Directions [J].
Li, Ang ;
Spano, Danilo ;
Krivochiza, Jevgenij ;
Domouchtsidis, Stavros ;
Tsinos, Christos G. ;
Masouros, Christos ;
Chatzinotas, Symeon ;
Li, Yonghui ;
Vucetic, Branka ;
Ottersten, Bjorn .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2020, 22 (02) :796-839
[8]   Interference Exploitation Precoding Made Practical: Optimal Closed-Form Solutions for PSK Modulations [J].
Li, Ang ;
Masouros, Christos .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2018, 17 (11) :7661-7676
[9]   Joint Symbol-Level Precoding and Reflecting Designs for IRS-Enhanced MU-MISO Systems [J].
Liu, Rang ;
Li, Ming ;
Liu, Qian ;
Swindlehurst, A. Lee .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (02) :798-811
[10]   Secure Symbol-Level Precoding in MU-MISO Wiretap Systems [J].
Liu, Rang ;
Li, Ming ;
Liu, Qian ;
Swindlehurst, A. Lee .
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2020, 15 :3359-3373