The Mehler maximal function:: A geometric proof of the weak type 1

被引:33
作者
Menárguez, T
Pérez, S
Soria, F
机构
[1] ETS Caminos, Dept Matemat Aplicada, Madrid 28040, Spain
[2] Univ Autonoma Madrid, Dept Matemat, Madrid 28049, Spain
[3] Univ Autonoma Madrid, Dept Matemat, Madrid 28049, Spain
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2000年 / 61卷
关键词
D O I
10.1112/S0024610700008723
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The weak type 1 for the Mehler maximal function is studied via a precise estimate for the 'maximal kernel'. This, in turn, allows the geometry involved in this setting to be described.
引用
收藏
页码:846 / 856
页数:11
相关论文
共 16 条
  • [1] de Guzman M., 1981, REAL VARIABLE METHOD, V46
  • [2] Fabes E. B., 1994, REV MAT IBEROAM, V10, P229, DOI [10.4171/RMI/152, DOI 10.4171/RMI/152]
  • [3] Forzani L, 1998, STUD MATH, V131, P205
  • [4] Mehler F. G., 1866, Journal fr die Reine und Angewandte Mathematik, P161, DOI DOI 10.1515/CRLL.1866.66.161
  • [5] Pointwise and norm estimates for operators associated with the Ornstein-Uhlenbeck semigroup
    Menarguez, T
    Perez, S
    Soria, F
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (01): : 25 - 30
  • [6] MENARGUEZ T, 1996, RENDICONTI CIRC MAT, V45, P421
  • [7] POISSON INTEGRALS FOR HERMITE AND LAGUERRE EXPANSIONS
    MUCKENHOUPT, B
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 139 (MAY) : 231 - +
  • [8] Operators associated with the Ornstein-Uhlenbeck semigroup
    Pérez, S
    Soria, F
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 61 : 857 - 871
  • [9] PEREZ S, IN PRESS J GEOM ANAL
  • [10] Perez S., 1996, THESIS U AUTONOMA MA