CONVERGENCE OF NONLOCAL GEOMETRIC FLOWS TO ANISOTROPIC MEAN CURVATURE MOTION

被引:2
|
作者
Cesaroni, Annalisa [1 ]
Pagliari, Valerio [2 ]
机构
[1] Univ Padua, Dept Stat Sci, Via Battisti 241-243, I-35121 Padua, Italy
[2] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
关键词
anisotropic mean curvature flow; geometric equations; De Giorgi's barriers for geometric evolutions; level-set method; viscosity solutions; Nonlocal curvature flow; APPROXIMATION SCHEMES; HOMOGENIZATION; UNIQUENESS; EXISTENCE; ALGORITHM; EQUATIONS; DYNAMICS;
D O I
10.3934/dcds.2021065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider nonlocal curvature functionals associated with positive interaction kernels, and we show that local anisotropic mean curvature functionals can be retrieved in a blow-up limit from them. As a consequence, we prove that the viscosity solutions to the rescaled nonlocal geometric flows locally uniformly converge to the viscosity solution to the anisotropic mean curvature motion. The result is achieved by combining a compactness argument and a set-theoretic approach related to the theory of De Giorgi's barriers for evolution equations.
引用
收藏
页码:4987 / 5008
页数:22
相关论文
共 50 条
  • [41] Motion driven by nonlocal curvature in the plane
    Giga, MH
    Giga, Y
    TOHOKU MATHEMATICAL PUBLICATIONS, NO 8: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ASYMPTOTICS IN NONLINEAR DIFFUSIVE SYSTEMS, 1998, : 75 - 83
  • [42] Generalized Motion¶by Nonlocal Curvature in the Plane
    Mi-Ho Giga
    Yoshikazu Giga
    Archive for Rational Mechanics and Analysis, 2001, 159 : 295 - 333
  • [43] Generalized motion by nonlocal curvature in the plane
    Giga, MH
    Giga, Y
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 159 (04) : 295 - 333
  • [44] Mean curvature flow and geometric inequalities
    Topping, P
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1998, 503 : 47 - 61
  • [45] Geometric elliptic functionals and mean curvature
    Alias, Luis J.
    de Lira, Jorge H. S.
    Rigoli, Marco
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2016, 15 : 609 - 655
  • [46] CONVERGENCE ALONG MEAN FLOWS
    Holding, Thomas
    Hutridurga, Harsha
    Rauch, Jeffrey
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (01) : 222 - 271
  • [47] Stochastic motion by mean curvature
    Yip, NK
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1998, 144 (04) : 313 - 355
  • [48] An algorithm for mean curvature motion
    Chambolle, A
    INTERFACES AND FREE BOUNDARIES, 2004, 6 (02): : 195 - 218
  • [49] Stochastic Motion by Mean Curvature
    Nung Kwan Yip
    Archive for Rational Mechanics and Analysis, 1998, 144 : 313 - 355
  • [50] Motion by Mean Curvature and Nucleation
    Comptes Rendus L'Acad Sci Ser I Math, 1 (55):