CONVERGENCE OF NONLOCAL GEOMETRIC FLOWS TO ANISOTROPIC MEAN CURVATURE MOTION

被引:2
|
作者
Cesaroni, Annalisa [1 ]
Pagliari, Valerio [2 ]
机构
[1] Univ Padua, Dept Stat Sci, Via Battisti 241-243, I-35121 Padua, Italy
[2] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
关键词
anisotropic mean curvature flow; geometric equations; De Giorgi's barriers for geometric evolutions; level-set method; viscosity solutions; Nonlocal curvature flow; APPROXIMATION SCHEMES; HOMOGENIZATION; UNIQUENESS; EXISTENCE; ALGORITHM; EQUATIONS; DYNAMICS;
D O I
10.3934/dcds.2021065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider nonlocal curvature functionals associated with positive interaction kernels, and we show that local anisotropic mean curvature functionals can be retrieved in a blow-up limit from them. As a consequence, we prove that the viscosity solutions to the rescaled nonlocal geometric flows locally uniformly converge to the viscosity solution to the anisotropic mean curvature motion. The result is achieved by combining a compactness argument and a set-theoretic approach related to the theory of De Giorgi's barriers for evolution equations.
引用
收藏
页码:4987 / 5008
页数:22
相关论文
共 50 条
  • [41] Nonlocal estimates for the volume preserving mean curvature flow and applications
    Lambert, Ben
    Maeder-Baumdicker, Elena
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (07)
  • [42] Mean curvature motion of point cloud varifolds
    Buet, Blanche
    Rumpf, Martin
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2022, 56 (05) : 1773 - 1808
  • [43] Convergence of Perturbed Allen-Cahn Equations to Forced Mean Curvature Flow
    Mugnai, Luca
    Roeger, Matthias
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (01) : 41 - 75
  • [44] MEAN CURVATURE FLOWS OF TWO-CONVEX LAGRANGIANS
    Tsai, Chung-Jun
    Tsui, Mao-Pei
    Wang, Mu-Tao
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2024, 128 (03) : 1269 - 1284
  • [45] CONVEX SETS EVOLVING BY VOLUME-PRESERVING FRACTIONAL MEAN CURVATURE FLOWS
    Cinti, Eleonora
    Sinestrari, Carlo
    Valdinoci, Enrico
    ANALYSIS & PDE, 2020, 13 (07): : 2149 - 2171
  • [46] The Dirichlet problem for a prescribed anisotropic mean curvature equation: existence, uniqueness and regularity of solutions
    Corsato, Chiara
    De Coster, Colette
    Omari, Pierpaolo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (05) : 4572 - 4618
  • [47] Interior gradient estimates for anisotropic mean-curvature flow
    Clutterbuck, Julie
    PACIFIC JOURNAL OF MATHEMATICS, 2007, 229 (01) : 119 - 136
  • [48] Holder regularity for equations of prescribed anisotropic mean curvature type
    Luo, Yong
    Xia, Chao
    MANUSCRIPTA MATHEMATICA, 2013, 141 (3-4) : 589 - 600
  • [49] A Volume-Preserving Anisotropic Mean Curvature Type Flow
    Wei, Yong
    Xiong, Changwei
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2021, 70 (03) : 881 - 905
  • [50] A PRESCRIBED ANISOTROPIC MEAN CURVATURE EQUATION MODELING THE CORNEAL SHAPE: A PARADIGM OF NONLINEAR ANALYSIS
    Corsato, Chiara
    De Coster, Colette
    Obersnel, Franco
    Omari, Pierpaolo
    Soranzo, Alessandro
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (02): : 213 - 256