CONVERGENCE OF NONLOCAL GEOMETRIC FLOWS TO ANISOTROPIC MEAN CURVATURE MOTION

被引:2
|
作者
Cesaroni, Annalisa [1 ]
Pagliari, Valerio [2 ]
机构
[1] Univ Padua, Dept Stat Sci, Via Battisti 241-243, I-35121 Padua, Italy
[2] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
关键词
anisotropic mean curvature flow; geometric equations; De Giorgi's barriers for geometric evolutions; level-set method; viscosity solutions; Nonlocal curvature flow; APPROXIMATION SCHEMES; HOMOGENIZATION; UNIQUENESS; EXISTENCE; ALGORITHM; EQUATIONS; DYNAMICS;
D O I
10.3934/dcds.2021065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider nonlocal curvature functionals associated with positive interaction kernels, and we show that local anisotropic mean curvature functionals can be retrieved in a blow-up limit from them. As a consequence, we prove that the viscosity solutions to the rescaled nonlocal geometric flows locally uniformly converge to the viscosity solution to the anisotropic mean curvature motion. The result is achieved by combining a compactness argument and a set-theoretic approach related to the theory of De Giorgi's barriers for evolution equations.
引用
收藏
页码:4987 / 5008
页数:22
相关论文
共 50 条
  • [31] The vanishing exponent limit for motion by a power of mean curvature
    Liu, Qing
    INTERFACES AND FREE BOUNDARIES, 2020, 22 (01) : 51 - 84
  • [32] Anisotropic inverse harmonic mean curvature flow
    Lu, Jian
    FRONTIERS OF MATHEMATICS IN CHINA, 2014, 9 (03) : 509 - 521
  • [33] A representation formula for the mean curvature motion
    Buckdahn, R
    Cardaliaguet, P
    Quincampoix, M
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (04) : 827 - 846
  • [34] Uniqueness of conical singularities for mean curvature flows
    Lee, Tang-Kai
    Zhao, Xinrui
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (01)
  • [35] Ancient mean curvature flows out of polytopes
    Bourni, Theodora
    Langford, Mat
    Tinaglia, Giuseppe
    GEOMETRY & TOPOLOGY, 2022, 26 (04) : 1849 - 1905
  • [36] On level set formulations for anisotropic mean curvature flow and surface diffusion
    Clarenz, U
    Hausser, F
    Rumpf, M
    Voigt, A
    Weikard, U
    MULTISCALE MODELING IN EPITAXIAL GROWTH, 2005, 149 : 227 - 237
  • [37] Minimizing movements for forced anisotropic mean curvature flow of partitions with mobilities
    Bellettini, Giovanni
    Chambolle, Antonin
    Kholmatov, Shokhrukh
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2021, 151 (04) : 1135 - 1170
  • [38] ESTIMATE FOR EVOLUTIONARY SURFACES OF PRESCRIBED MEAN CURVATURE AND THE CONVERGENCE
    Wang, Peihe
    Gao, Xinyu
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (06): : 1919 - 1937
  • [39] Equilibrium solutions to generalized motion by mean curvature
    Tom Ilmanen
    Peter Sternberg
    William P. Ziemer
    The Journal of Geometric Analysis, 1998, 8 (5)
  • [40] THE EXTENSION AND CONVERGENCE OF MEAN CURVATURE FLOW IN HIGHER CODIMENSION
    Liu, Kefeng
    Xu, Hongwei
    Ye, Fei
    Zhao, Entao
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (03) : 2231 - 2262