CONVERGENCE OF NONLOCAL GEOMETRIC FLOWS TO ANISOTROPIC MEAN CURVATURE MOTION

被引:2
|
作者
Cesaroni, Annalisa [1 ]
Pagliari, Valerio [2 ]
机构
[1] Univ Padua, Dept Stat Sci, Via Battisti 241-243, I-35121 Padua, Italy
[2] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
关键词
anisotropic mean curvature flow; geometric equations; De Giorgi's barriers for geometric evolutions; level-set method; viscosity solutions; Nonlocal curvature flow; APPROXIMATION SCHEMES; HOMOGENIZATION; UNIQUENESS; EXISTENCE; ALGORITHM; EQUATIONS; DYNAMICS;
D O I
10.3934/dcds.2021065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider nonlocal curvature functionals associated with positive interaction kernels, and we show that local anisotropic mean curvature functionals can be retrieved in a blow-up limit from them. As a consequence, we prove that the viscosity solutions to the rescaled nonlocal geometric flows locally uniformly converge to the viscosity solution to the anisotropic mean curvature motion. The result is achieved by combining a compactness argument and a set-theoretic approach related to the theory of De Giorgi's barriers for evolution equations.
引用
收藏
页码:4987 / 5008
页数:22
相关论文
共 50 条
  • [31] Ginzburg-Landau equation and motion by mean curvature, I: Convergence
    Journal of Geometric Analysis, 7 (03): : 437 - 475
  • [32] ASYMPTOTIC CONVERGENCE FOR A CLASS OF INVERSE MEAN CURVATURE FLOWS IN Rn+1
    Chen, Li
    Mao, Jing
    Tu, Qiang
    Wu, Di
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (01) : 379 - 392
  • [33] A MORPHOLOGICAL SCHEME FOR MEAN-CURVATURE MOTION AND APPLICATIONS TO ANISOTROPIC DIFFUSION AND MOTION OF LEVEL SETS
    CATTE, F
    DIBOS, F
    KOEPFLER, G
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (06) : 1895 - 1909
  • [34] On symplectic mean curvature flows
    Han X.
    Li J.
    Frontiers of Mathematics in China, 2007, 2 (1) : 47 - 60
  • [35] CONVERGENCE OF THE ALLEN-CAHN EQUATION TO BRAKES MOTION BY MEAN-CURVATURE
    ILMANEN, T
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1993, 38 (02) : 417 - 461
  • [36] Convergence rate of the Allen-Cahn equation to generalized motion by mean curvature
    Alfaro, Matthieu
    Droniou, Jerome
    Matano, Hiroshi
    JOURNAL OF EVOLUTION EQUATIONS, 2012, 12 (02) : 267 - 294
  • [37] Convergence rate of the Allen-Cahn equation to generalized motion by mean curvature
    Matthieu Alfaro
    Jérôme Droniou
    Hiroshi Matano
    Journal of Evolution Equations, 2012, 12 : 267 - 294
  • [38] The Geometric Meaning of Curvature: Local and Nonlocal Aspects of Ricci Curvature
    Bauer, Frank
    Hua, Bobo
    Jost, Jurgen
    Liu, Shiping
    Wang, Guofang
    MODERN APPROACHES TO DISCRETE CURVATURE, 2017, 2184 : 1 - 62
  • [39] Anisotropic mean curvature flow of Lipschitz graphs and convergence to self-similar solutions*
    Cesaroni, A.
    Kroener, H.
    Novaga, M.
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2021, 27
  • [40] Motion by anisotropic mean curvature as sharp interface limit of an inhomogeneous and anisotropic Allen-Cahn equation
    Alfaro, Matthieu
    Garcke, Harald
    Hilhorst, Danielle
    Matano, Hiroshi
    Schaetzle, Reiner
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2010, 140 : 673 - 706