CONVERGENCE OF NONLOCAL GEOMETRIC FLOWS TO ANISOTROPIC MEAN CURVATURE MOTION

被引:2
|
作者
Cesaroni, Annalisa [1 ]
Pagliari, Valerio [2 ]
机构
[1] Univ Padua, Dept Stat Sci, Via Battisti 241-243, I-35121 Padua, Italy
[2] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
关键词
anisotropic mean curvature flow; geometric equations; De Giorgi's barriers for geometric evolutions; level-set method; viscosity solutions; Nonlocal curvature flow; APPROXIMATION SCHEMES; HOMOGENIZATION; UNIQUENESS; EXISTENCE; ALGORITHM; EQUATIONS; DYNAMICS;
D O I
10.3934/dcds.2021065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider nonlocal curvature functionals associated with positive interaction kernels, and we show that local anisotropic mean curvature functionals can be retrieved in a blow-up limit from them. As a consequence, we prove that the viscosity solutions to the rescaled nonlocal geometric flows locally uniformly converge to the viscosity solution to the anisotropic mean curvature motion. The result is achieved by combining a compactness argument and a set-theoretic approach related to the theory of De Giorgi's barriers for evolution equations.
引用
收藏
页码:4987 / 5008
页数:22
相关论文
共 50 条
  • [1] An approximation scheme for the anisotropic and nonlocal mean curvature flow
    Ishii, Katsuyuki
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2014, 21 (02): : 219 - 252
  • [2] Minimizing movements for anisotropic and inhomogeneous mean curvature flows
    Chambolle, Antonin
    De Gennaro, Daniele
    Morini, Massimiliano
    ADVANCES IN CALCULUS OF VARIATIONS, 2024, 17 (04) : 1095 - 1129
  • [3] An approximation scheme for the anisotropic and nonlocal mean curvature flow
    Katsuyuki Ishii
    Nonlinear Differential Equations and Applications NoDEA, 2014, 21 : 219 - 252
  • [4] Nonlocal Curvature Flows
    Chambolle, Antonin
    Morini, Massimiliano
    Ponsiglione, Marcello
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 218 (03) : 1263 - 1329
  • [5] Stability results for nonlocal geometric evolutions and limit cases for fractional mean curvature flows
    Cesaroni, A.
    De Luca, L.
    Novaga, M.
    Ponsiglione, M.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2021, 46 (07) : 1344 - 1371
  • [6] Convergence of diffusion generated motion to motion by mean curvature
    Swartz, Drew
    Yip, Nung Kwan
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2017, 42 (10) : 1598 - 1643
  • [7] Convergence rate of the Allen-Cahn equation to generalized motion by mean curvature
    Alfaro, Matthieu
    Droniou, Jerome
    Matano, Hiroshi
    JOURNAL OF EVOLUTION EQUATIONS, 2012, 12 (02) : 267 - 294
  • [8] Consistency result for a non monotone scheme for anisotropic mean curvature flow
    Bonnetier, Eric
    Bretin, Elie
    Chambolle, Antonin
    INTERFACES AND FREE BOUNDARIES, 2012, 14 (01) : 1 - 35
  • [9] Anisotropic mean curvature flow of Lipschitz graphs and convergence to self-similar solutions*
    Cesaroni, A.
    Kroener, H.
    Novaga, M.
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2021, 27
  • [10] An area minimizing scheme for anisotropic mean curvature flow
    Eto, Tokuhiro
    Giga, Yoshikazu
    Ishii, Katsuyuki
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2012, 88 (01) : 7 - 10