Trigonometric polynomials and multidimensional random walks: application to the ergodic theory

被引:2
作者
Schneider, D [1 ]
机构
[1] Univ Picardie, LAMFA, UPRES A 6119, F-80039 Amiens 01, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2000年 / 36卷 / 05期
关键词
spectral lemma; ergodic averages; Gaussian processes; random walk; almost sure convergence; Van der Corput inequality;
D O I
10.1016/S0246-0203(00)00138-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {S-k, k greater than or equal to 0} be a random walk define on the probability space (Ohm, B, P) as the partial sum of the k first terms of a sequence of I.I.D. random vectors Z(d) (d greater than or equal to 1) valued, with delta (delta > 0) positive moment. Given any probability measure nu on the torus T-d We give an upper bound for parallel to1/N Sigma (N-1)(k=0) exp 2i pi [alpha, S-k] parallel to (2,nu>(*) over bar * (d alpha)). We use random methods based on decoupling inequalities fur random Gaussian processes. We apply these results in ergodic theory: given any dynamical system (X, A, mu, T) such that T mu = mu, for f is an element of L-2(mu) we give conditions on the spectral measure of T to obtain mu -almost sure convergence of the ergodic average {1/N Sigma (N)(k=1) f o T-Sk(omega), N greater than or equal to 1} universally for the random walk. (C) 2000 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:617 / 646
页数:30
相关论文
共 15 条
[1]  
BLUM JR, 1975, P AM MATH SOC, V51, P359
[2]  
FERNIQUE X, 1985, CR ACAD SCI I-MATH, V300, P315
[3]   REGULARITY OF STATIONARY GAUSSIAN RANDOM FUNCTIONS [J].
FERNIQUE, X .
PROBABILITY THEORY AND RELATED FIELDS, 1991, 88 (04) :521-536
[4]  
Fernique X., 1975, ECOLE DET PROBABILIT, V480, P1
[5]  
FERNIQUE X, 1990, EXPOSITIONES MATH
[6]  
FERNIQUE X, 1993, IN PRESS ACT C HONN
[7]  
Fernique X., 1997, FONCTIONS ALEATOIRES
[8]   Multidimensional ergodic theorems and universally representative random sequences. [J].
Gamet, C ;
Schneider, D .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1997, 33 (02) :269-282
[9]  
Krengel U., 1985, ERGODIC THEOREMS
[10]  
KUIPERS L, 1974, UNIFORM DISTRIBUTION