Influence of nanoscale topology on bactericidal efficiency of black silicon surfaces

被引:114
作者
Linklater, Denver P. [1 ,2 ]
Huu Khuong Duy Nguyen [1 ]
Bhadra, Chris M. [1 ]
Juodkazis, Saulius [2 ,3 ]
Ivanova, Elena P. [1 ,3 ]
机构
[1] Swinburne Univ Technol, Fac Life & Social Sci, Hawthorn, Vic 3122, Australia
[2] Swinburne Univ Technol, Fac Sci Engn & Technol, Ctr Microphoton, Hawthorn, Vic 3122, Australia
[3] Swinburne Univ Technol, Fac Sci Engn & Technol, Ind Res Inst Swinburne, Hawthorn, Vic 3122, Australia
关键词
black silicon; bactericidal; reactive ion etching; nanofabrication; ADHESION; TOPOGRAPHY; CELLS; INFECTION;
D O I
10.1088/1361-6528/aa700e
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The nanostructuring of materials to create bactericidal and antibiofouling surfaces presents an exciting alternative to common methods of preventing bacterial adhesion. The fabrication of synthetic bactericidal surfaces has been inspired by the anti-wetting and anti-biofouling properties of insect wings, and other topologies found in nature. Black silicon is one such synthetic surfaces which has established bactericidal properties. In this study we show that time-dependent plasma etching of silicon wafers using 15, 30, and 45 min etching intervals, is able to produce different surface geometries with linearly increasing heights of approximately 280, 430, and 610 nm, respectively. After incubation on these surfaces with Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa bacterial cells it was established that smaller, more densely packed pillars exhibited the greatest bactericidal activity with 85% and 89% inactivation of bacterial cells, respectively. The decrease in the pillar heights, pillar cap diameter and inter-pillar spacing corresponded to a subsequent decrease in the number of attached cells for both bacterial species.
引用
收藏
页数:9
相关论文
共 49 条
[1]   The interaction of cells and bacteria with surfaces structured at the nanometre scale [J].
Anselme, K. ;
Davidson, P. ;
Popa, A. M. ;
Giazzon, M. ;
Liley, M. ;
Ploux, L. .
ACTA BIOMATERIALIA, 2010, 6 (10) :3824-3846
[2]   Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials [J].
Arciola, Carla Renata ;
Campoccia, Davide ;
Speziale, Pietro ;
Montanaro, Lucio ;
Costerton, John William .
BIOMATERIALS, 2012, 33 (26) :5967-5982
[3]   Photovoltaic properties of black silicon microstructured by femtosecond pulsed laser [J].
Bao, Xi ;
Liu, Feng ;
Zhou, Xiaoli .
OPTIK, 2012, 123 (16) :1474-1477
[4]   Do bacteria differentiate between degrees of nanoscale surface roughness? [J].
Bazaka, Kateryna ;
Crawford, Russell J. ;
Ivanova, Elena P. .
BIOTECHNOLOGY JOURNAL, 2011, 6 (09) :1103-1114
[5]   Antibacterial titanium nano-patterned arrays inspired by dragonfly wings [J].
Bhadra, Chris M. ;
Vi Khanh Truong ;
Pham, Vy T. H. ;
Al Kobaisi, Mohammad ;
Seniutinas, Gediminas ;
Wang, James Y. ;
Juodkazis, Saulius ;
Crawford, Russell J. ;
Ivanova, Elena P. .
SCIENTIFIC REPORTS, 2015, 5
[6]   Bactericidal dental nanocomposites containing 1,2,3-triazolium-functionalized POSS additive prepared through thiol-ene click polymerization [J].
Burujeny, Saeed Beigi ;
Yeganeh, Hamid ;
Atai, Mohammad ;
Gholami, Hoshyar ;
Sorayya, Marziyeh .
DENTAL MATERIALS, 2017, 33 (01) :119-131
[7]   The significance of infection related to orthopedic devices and issues of antibiotic resistance [J].
Campoccia, D ;
Montanaro, L ;
Arciola, CR .
BIOMATERIALS, 2006, 27 (11) :2331-2339
[8]   Wettability control of stainless steel surfaces via evolution of intrinsic grain structures [J].
Choi, Won Tae ;
Oh, Kkochnim ;
Singh, Preet M. ;
Breedveld, Victor ;
Hess, Dennis W. .
JOURNAL OF MATERIALS SCIENCE, 2016, 51 (11) :5196-5206
[9]   Surface topographical factors influencing bacterial attachment [J].
Crawford, Russell J. ;
Webb, Hayden K. ;
Vi Khanh Truong ;
Hasan, Jafar ;
Ivanova, Elena P. .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2012, 179 :142-149
[10]  
Deng Y, 2011, BIOPHYS J, V100, P514