Unified relational-theoretic approach in metric-like spaces with an application

被引:1
作者
Jain, Reena [1 ]
Nashine, Hemant Kumar [2 ,3 ]
Lee, Jung Rye [4 ]
Park, Choonkil [5 ]
机构
[1] VIT Bhopal Univ, Math Div, SASL, Bhopal 466114, Madhya Pradesh, India
[2] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore 632014, Tamil Nadu, India
[3] Univ Johannesburg, Dept Math & Appl Math, Kingsway Campus, ZA-2006 Auckland Pk, South Africa
[4] Daejin Univ, Dept Data Sci, Kyunggi 11159, South Korea
[5] Hanyang Univ, Res Inst Nat Sci, Seoul 04763, South Korea
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 08期
关键词
positive definite matrix; nonlinear matrix equation; metric-like space; relational metric space; fixed point; FIXED-POINT THEOREMS; CONTRACTIONS; MAPPINGS;
D O I
10.3934/math.2021520
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a modified implicit relation and obtain some new fixed point results for sigma-implicit type contractive conditions in relational metric-like spaces. We present some nontrivial examples to illustrative facts and compare our results with the related work. We also discuss sufficient conditions for the existence of a unique positive definite solution of the non-linear matrix equation U = D + Sigma(m)(i=1) A(i)*G(U)A(i), where D is an n x n Hermitian positive definite matrix, A(1), A(2), ... , A(m) are n x n matrices, and G is a non-linear self-mapping of the set of all Hermitian matrices which is continuous in the trace norm. Finally, we discuss a couple of examples, convergence and error analysis, average CPU time analysis and visualization of solution in surface plot.
引用
收藏
页码:8959 / 8977
页数:19
相关论文
共 27 条
[1]  
Ahmadullah M., 2016, FIXED POINT THEORY A, V1, P1, DOI [10.1186/s13663-016-0531-6, DOI 10.1186/S13663-016-0531-6]
[2]   UNIFIED RELATION-THEORETIC FIXED POINT RESULTS VIA FR-SUZUKI-CONTRACTIONS WITH AN APPLICATION [J].
Ahmadullah, Md ;
Imdad, Mohammad .
FIXED POINT THEORY, 2020, 21 (01) :19-34
[3]   RELATION-THEORETIC METRICAL FIXED POINT THEOREMS UNDER NONLINEAR CONTRACTIONS [J].
Ahmadullah, Md ;
Imdad, Mohammad ;
Gubran, Rqeeb .
FIXED POINT THEORY, 2019, 20 (01) :3-17
[4]  
Ahmadullah M, 2017, BULL MATH ANAL APPL, V9, P31
[5]   Relation-theoretic contraction principle [J].
Alam, Aftab ;
Imdad, Mohammad .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2015, 17 (04) :693-702
[6]  
Aliouche A, 2007, HACET J MATH STAT, V36, P11
[7]   FIXED POINT RESULTS FOR FR-GENERALIZED CONTRACTIVE MAPPINGS IN PARTIAL METRIC SPACES [J].
Altun, Ishak ;
Asim, Mohammad ;
Imdad, Mohammad ;
Alfaqih, Waleed M. .
MATHEMATICA SLOVACA, 2019, 69 (06) :1413-1424
[8]   Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces [J].
Altun, Ishak ;
Erduran, Ali .
FIXED POINT THEORY AND APPLICATIONS, 2011,
[9]   Metric-like spaces, partial metric spaces and fixed points [J].
Amini-Harandi, A. .
FIXED POINT THEORY AND APPLICATIONS, 2012,
[10]  
[Anonymous], 2007, DEMONSTRATIO MATH