A COMPACTNESS THEOREM ON BRANSON'S Q-CURVATURE EQUATION

被引:9
作者
Li, Gang [1 ,2 ]
机构
[1] Peking Univ, Beijing Int Ctr Math Res, Beijing, Peoples R China
[2] Shandong Univ, Dept Math, Jian, Jiangxi, Peoples R China
基金
中国博士后科学基金;
关键词
compactness; constant Q-curvature metrics; blowup argument; positive mass theorem; maximum principle; fourth order elliptic equations; BLOW-UP PHENOMENA; YAMABE PROBLEM; CONFORMAL METRICS; SCALAR CURVATURE; PANEITZ EQUATION; INVARIANT; OPERATORS; PROOF;
D O I
10.2140/pjm.2019.302.119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, g) be a closed Riemannian manifold of dimension 5 <= n <= 7. Assume that (M, g) is not conformally equivalent to the round sphere. If the scalar curvature R-g is greater than or equal to 0 and the Q-curvature Q(g) is greater than or equal to 0 on M with Q(g)(p) > 0 for some point p is an element of M, we prove that the set of metrics in the conformal class of g with prescribed constant positive Q-curvature is compact in C-4,C- alpha for any 0 < alpha < 1.
引用
收藏
页码:119 / 179
页数:61
相关论文
共 40 条
[1]  
ARMITAGE DH, 1973, J LOND MATH SOC, V7, P251
[2]   DIFFERENTIAL-OPERATORS CANONICALLY ASSOCIATED TO A CONFORMAL STRUCTURE [J].
BRANSON, TP .
MATHEMATICA SCANDINAVICA, 1985, 57 (02) :293-345
[3]  
Brendle S, 2008, J AM MATH SOC, V21, P951
[4]  
Brendle S, 2009, J DIFFER GEOM, V81, P225
[5]   On a class of locally conformally flat manifolds [J].
Chang, SYA ;
Hang, FB ;
Yang, PC .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (04) :185-209
[6]  
Chen CC, 1998, J DIFFER GEOM, V49, P115
[7]   Nonlinear biharmonic equations with negative exponents [J].
Choi, Y. S. ;
Xu, Xingwang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (01) :216-234
[8]  
Djadli Z, 2000, DUKE MATH J, V104, P129
[9]  
Druet O, 2004, INT MATH RES NOTICES, V2004, P1143
[10]  
EICHMAIR M, 2013, COMMUN MATH PHYS, V319, P575