On images of Mori dream spaces

被引:45
作者
Okawa, Shinnosuke [1 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Machikaneyama 1-1, Toyonaka, Osaka 5600043, Japan
关键词
COX RINGS; VARIETIES; SINGULARITIES; DIVISORS; CONE;
D O I
10.1007/s00208-015-1245-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to study the geometry of images of morphisms from Mori dream spaces. First we prove that a variety which admits a surjective morphism from a Mori dream space is again a Mori dream space. Secondly we introduce a natural fan structure on the effective cone of Mori dream spaces. We show that it encodes the information of Zariski decompositions, which in turn is equivalent to the information of the variation of GIT quotients of their Cox rings. Finally we show that under a surjective morphism between Mori dream spaces, the fan of the target space coincides with the restriction of the fan of the source.
引用
收藏
页码:1315 / 1342
页数:28
相关论文
共 35 条
[1]   Polyhedral Divisors of Cox Rings [J].
Altmann, Klaus ;
Wisniewski, Jaroslaw A. .
MICHIGAN MATHEMATICAL JOURNAL, 2011, 60 (02) :463-480
[2]  
[Anonymous], 2004, A Series of Modern Surveys in Mathematics
[3]   On Cox rings of K3 surfaces [J].
Artebani, Michela ;
Hausen, Juergen ;
Laface, Antonio .
COMPOSITIO MATHEMATICA, 2010, 146 (04) :964-998
[4]  
Arzhantsev I., 2015, CAMBRIDGE STUDIES AD, V144
[5]  
Bäker H, 2011, P AM MATH SOC, V139, P3135
[6]   EXISTENCE OF MINIMAL MODELS FOR VARIETIES OF LOG GENERAL TYPE [J].
Birkar, Caucher ;
Cascini, Paolo ;
Hacon, Christopher D. ;
McKernan, James .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (02) :405-468
[7]  
BRION M, 1994, J MATH SCI-U TOKYO, V1
[8]   New outlook on the Minimal Model Program, II [J].
Corti, Alessio ;
Lazic, Vladimir .
MATHEMATISCHE ANNALEN, 2013, 356 (02) :617-633
[9]  
Dolgachev IV, 1998, IHES PUBL MATH, P5
[10]  
Eisenbud D., 1995, COMMUTATIVE ALGEBRA