The representation theorem of onto isometric mappings between two unit spheres of l∞-type spaces and the application on isometric extension problem

被引:44
作者
Ding, GG [1 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2004年 / 47卷 / 05期
关键词
isometric mapping; isometric extension;
D O I
10.1360/03ys0049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first derive the representation theorem of onto isometric mappings in the unit spheres of real l(infinity)-type spaces, then we conclude that such mappings can be extended to the whole space as (real) linear isometries.
引用
收藏
页码:722 / 729
页数:8
相关论文
共 9 条
[1]  
Banach Stefan, 1932, Theorie des operations lineaires
[2]  
Day MM, 1973, Normed linear spaces, P27
[3]  
Ding GG, 2003, SCI CHINA SER A, V46, P333
[4]   The 1-Lipschitz mapping between the unit spheres of two Hilbert spaces can be extended to a real linear isometry of the whole space [J].
Ding, GG .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2002, 45 (04) :479-483
[5]  
Ding J, 2003, CHINESE J INORG CHEM, V19, P993
[6]  
Lindenstrauss J., 1979, ERGEB MATH GRENZGEB, V97
[7]  
SCHWARZ HU, 1984, TEUBNER TEXTE ZAR MA, V71
[8]  
TINGLEY D, 1987, GEOMETRIAE DEDICATA, V22, P371
[9]  
Wang R., 1995, J MATH SCI-U TOKYO, V2, P131