Entire Solutions of Binomial Differential Equations

被引:10
作者
Gundersen, Gary G. [1 ]
Yang, Chung-Chun [2 ]
机构
[1] Univ New Orleans, Dept Math, New Orleans, LA 70148 USA
[2] Nanjing Univ, Dept Math, Nanjing 2100930, Jiangsu, Peoples R China
关键词
Entire function; Non-linear differential equation; Binomial differential equation; Meromorphic function; Nevanlinna theory; ZEROS;
D O I
10.1007/s40315-021-00384-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We find explicit forms for all the entire solutions of a certain type of non-linear binomial differential equation. This has connections to results of Hayman, Mues, Langley and Bergweiler. Observations about entire solutions of two similar types of binomial differential equations are discussed, and open questions about all three types of equations are posed.
引用
收藏
页码:605 / 617
页数:13
相关论文
共 10 条
[1]   ON THE ZEROS OF CERTAIN HOMOGENEOUS DIFFERENTIAL POLYNOMIALS [J].
BERGWEILER, W .
ARCHIV DER MATHEMATIK, 1995, 64 (03) :199-202
[2]   PICARD VALUES OF MEROMORPHIC FUNCTIONS AND THEIR DERIVATIVES [J].
HAYMAN, WK .
ANNALS OF MATHEMATICS, 1959, 70 (01) :9-42
[3]  
Hayman WK., 1964, MEROMORPHIC FUNCTION
[4]  
Laine I., 1993, NEVANLINNA THEORY CO
[5]  
Langley, 1999, RESULTS MATH, V35, P284, DOI [10.1007/BF03322820, DOI 10.1007/BF03322820]
[6]  
LANGLEY JK, 1993, J LOND MATH SOC, V48, P500
[7]   A lower bound for the number of zeros of a meromorphic function and its second derivative [J].
Langley, JK .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1996, 39 :171-185
[8]   ZEROS OF HOMOGENEOUS DIFFERENTIAL POLYNOMIALS [J].
MUES, E .
MANUSCRIPTA MATHEMATICA, 1978, 23 (04) :325-341
[9]   HAYMANS HYPOTHESIS [J].
MUES, E .
MATHEMATISCHE ZEITSCHRIFT, 1971, 119 (01) :11-&
[10]  
Ozawa M., 1989, ANALYTIC FUNCTION TH, V212, P199