Large time behavior of solutions for the porous medium equation with a nonlinear gradient source

被引:0
作者
Li, Nan [1 ]
Zheng, Pan [2 ,3 ]
Mu, Chunlai [2 ]
Ahmed, Iftikhar [2 ]
机构
[1] Southwestern Univ Finance & Econ, Dept Appl Math, Chengdu 610074, Peoples R China
[2] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
[3] Chongqing Univ Posts & Telecommun, Coll Math & Stat, Chongqing, Peoples R China
关键词
large time behavior; separate variable solution; porous medium equation; gradient source; blow-up; HAMILTON-JACOBI EQUATIONS; DIRICHLET BOUNDARY-CONDITIONS; DEGENERATE PARABOLIC EQUATION; FAST DIFFUSION EQUATION; STEADY-STATES; GLOBAL-SOLUTIONS; CAUCHY-PROBLEM; HEAT-EQUATION; BLOW-UP; CONVERGENCE;
D O I
10.1186/1687-2770-2014-98
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the large time behavior of non-negative solutions for the porous medium equation with a nonlinear gradient source u(t) = Delta u(m) + vertical bar del u(l)vertical bar(q), (x,t) is an element of Omega x (0, infinity), where l >= m > 1 and 1 <= q < 2. When l(q) = m, we prove that the global solution converges to the separate variable solution t(-)1/m-1 f(x). While m < l(q) <= m + 1, we note that the global solution converges to the separate variable solution t(-)1/m-1 f(0)(x). Moreover, when l(q) > m +1, we show that the global solution also converges to the separate variable solution t(-)1/m-1 f(0)(x) for the small initial data u(0)(x), and we find that the solution u(x, t) blows up in finite time for the large initial data u(0)(x).
引用
收藏
页数:20
相关论文
共 33 条
[1]   Degenerate parabolic equations with initial data measures [J].
Andreucci, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (10) :3911-3923
[2]  
[Anonymous], 1994, MATH APPL
[3]  
Arrieta JM, 2004, ANN SCUOLA NORM-SCI, V3, P1
[4]  
Bardi M., 1997, Optimal control and viscosity solutions of HamiltonJacobi-Bellman equations
[5]   On the large time behavior of solutions of Hamilton-Jacobi equations [J].
Barles, G ;
Souganidis, PE .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 31 (04) :925-939
[6]   Convergence to steady states for radially symmetric solutions to a quasilinear degenerate diffusive Hamilton-Jacobi equation [J].
Barles, Guy ;
Laurencot, Philippe ;
Stinner, Christian .
ASYMPTOTIC ANALYSIS, 2010, 67 (3-4) :229-250
[7]   Large time behavior for a viscous Hamilton-Jacobi equation with Neumann boundary condition [J].
Benachour, S ;
Dabuleanu, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 216 (01) :223-258
[8]  
Benachour S, 2007, ASYMPTOTIC ANAL, V51, P209
[9]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[10]  
Da Lio F, 2002, COMMUN PART DIFF EQ, V27, P283