The 1-Yamabe equation on graphs

被引:16
作者
Ge, Huabin [1 ]
Jiang, Wenfeng [2 ]
机构
[1] Renmin Univ China, Sch Math, Beijing 100872, Peoples R China
[2] Sun Yet Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Peoples R China
关键词
1-Laplacian; Yamabe equation; graphs; KAZDAN-WARNER EQUATION; CONFORMAL DEFORMATION; 1-LAPLACIAN; EXISTENCE; CONSTANT; SPECTRUM;
D O I
10.1142/S0219199718500402
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the following 1-Yamabe equation on connected finite graphs Delta(1)u + gSgn (u) = h vertical bar u vertical bar(alpha-1) Sgn (u), where Delta(1) is the discrete 1-Laplacian, alpha > 1 and g, h > 0 are known. We show that the above 1-Yamabe equation always has a nontrivial solution u >= 0, u not equal 0.
引用
收藏
页数:10
相关论文
共 28 条
[1]  
[Anonymous], 2009, P 26 ANN INT C MACH, DOI DOI 10.1145/1553374.1553385
[2]  
AUBIN T., 1998, SPRINGER MONOGRAPHS
[3]   Nodal domains of eigenvectors for 1-Laplacian on graphs [J].
Chang, K. C. ;
Shao, Sihong ;
Zhang, Dong .
ADVANCES IN MATHEMATICS, 2017, 308 :529-574
[4]   Spectrum of the 1-Laplacian and Cheeger's Constant on Graphs [J].
Chang, K. C. .
JOURNAL OF GRAPH THEORY, 2016, 81 (02) :167-207
[5]   THE 1-LAPLACIAN CHEEGER CUT: THEORY AND ALGORITHMS [J].
Chang, K. C. ;
Shao, Sihong ;
Zhang, Dong .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2015, 33 (05) :443-467
[6]   THE SPECTRUM OF THE 1-LAPLACE OPERATOR [J].
Chang, Kung Ching .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (05) :865-894
[7]  
Ge H. B., J KOREAN MATH SOC
[8]  
Ge H. B., 2016, ARXIV161104902
[9]   A p-TH YAMABE EQUATION ON GRAPH [J].
Ge, Huabin .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (05) :2219-2224
[10]   Kazdan-Warner equation on graph in the negative case [J].
Ge, Huabin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 453 (02) :1022-1027