On existence, multiplicity, uniqueness and stability of positive solutions of a Leslie-Gower type diffusive predator-prey system

被引:0
作者
Zhou, Jun [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
来源
NONLINEAR ANALYSIS-MODELLING AND CONTROL | 2014年 / 19卷 / 04期
关键词
Leslie-Gower type diffusive predator-prey system; positive steady state solutions; uniqueness; multiplicity; stability; II SCHEMES; FUNCTIONAL-RESPONSE; GLOBAL STABILITY; MODEL; BIFURCATION; COMPETITION;
D O I
10.15388/NA.2014.4.11
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a Leslie-Gower type diffusive predator-prey system. By using topological degree theory, bifurcation theory, energy estimates and asymptotic behavior analysis, we prove the existence, multiplicity, uniqueness and stability of positive steady states solutions under certain conditions on parameters.
引用
收藏
页码:669 / 688
页数:20
相关论文
共 32 条
[1]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[2]   Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes [J].
Aziz-Alaoui, MA ;
Okiye, MD .
APPLIED MATHEMATICS LETTERS, 2003, 16 (07) :1069-1075
[3]   BIFURCATION OF STEADY-STATE SOLUTIONS IN PREDATOR-PREY AND COMPETITION SYSTEMS [J].
BLAT, J ;
BROWN, KJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1984, 97 :21-34
[4]  
Cantrell R. S., 2003, SPATIAL ECOLOGY VIA
[5]  
Casal A., 1994, Differ. Integral Equ, V7, P411
[6]  
Crandall M.G., 1971, J. Funct. Anal., V8, P321, DOI DOI 10.1016/0022-1236(71)90015-2
[7]  
CRANDALL MG, 1973, ARCH RATION MECH AN, V52, P161, DOI 10.1007/BF00282325
[9]   GLOBAL STABILITY FOR A CLASS OF PREDATOR-PREY SYSTEMS [J].
HSU, SB ;
HUANG, TW .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (03) :763-783
[10]  
KATO T, 1995, PERTURBATION THEORY