Motor Imagery Classification Based on Bilinear Sub-Manifold Learning of Symmetric Positive-Definite Matrices

被引:83
作者
Xie, Xiaofeng [1 ]
Yu, Zhu Liang [1 ]
Lu, Haiping [2 ]
Gu, Zhenghui [1 ]
Li, Yuanqing [1 ]
机构
[1] South China Univ Technol, Coll Automat Sci & Engn, Guangzhou 510641, Guangdong, Peoples R China
[2] Hong Kong Baptist Univ, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Classification algorithms; covariance matrices; dimensionality reduction; electroencephalography (EEG); information geometry; motor imagery; NONLINEAR DIMENSIONALITY REDUCTION; COMMON SPATIAL-PATTERNS; EOG ARTIFACTS; DESIGN;
D O I
10.1109/TNSRE.2016.2587939
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In motor imagery brain-computer interfaces (BCIs), the symmetric positive-definite (SPD) covariance matrices of electroencephalogram (EEG) signals carry important discriminative information. In this paper, we intend to classify motor imagery EEG signals by exploiting the fact that the space of SPD matrices endowed with Riemannian distance is a high-dimensional Riemannian manifold. To alleviate the overfitting and heavy computation problems associated with conventional classification methods on high-dimensional manifold, we propose a framework for intrinsic sub-manifold learning from a high-dimensional Riemannian manifold. Considering a special case of SPD space, a simple yet efficient bilinear sub-manifold learning (BSML) algorithm is derived to learn the intrinsic sub-manifold by identifying a bilinear mapping that maximizes the preservation of the local geometry and global structure of the original manifold. Two BSML-based classification algorithms are further proposed to classify the data on a learned intrinsic sub-manifold. Experimental evaluation of the classification of EEG revealed that the BSML method extracts the intrinsic sub-manifold approximately 5x faster and with higher classification accuracy compared with competing algorithms. The BSML also exhibited strong robustness against a small training dataset, which often occurs in BCI studies.
引用
收藏
页码:504 / 516
页数:13
相关论文
共 40 条
[1]   Separable Common Spatio-Spectral Patterns for Motor Imagery BCI Systems [J].
Aghaei, Amirhossein S. ;
Mahanta, Mohammad Shahin ;
Plataniotis, Konstantinos N. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2016, 63 (01) :15-29
[2]  
[Anonymous], 2003, Geodesy-the Challenge of the 3rd Millennium, DOI [10.1007/978-3-662-05296-9_31, DOI 10.1007/978-3-662-05296-9_31]
[3]  
[Anonymous], 2003, Advances in Neural Information Processing Systems 15, DOI DOI 10.1109/34.682189
[4]  
[Anonymous], 2003, ADV NEURAL INF PROCE
[5]  
Barachant A., 2010, 2010 IEEE 12th International Workshop on Multimedia Signal Processing (MMSP), P472, DOI 10.1109/MMSP.2010.5662067
[6]   Multiclass Brain-Computer Interface Classification by Riemannian Geometry [J].
Barachant, Alexandre ;
Bonnet, Stephane ;
Congedo, Marco ;
Jutten, Christian .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (04) :920-928
[7]   Riemannian Geometry Applied to BCI Classification [J].
Barachant, Alexandre ;
Bonnet, Stephane ;
Congedo, Marco ;
Jutten, Christian .
LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION, 2010, 6365 :629-+
[8]   Optimizing spatial filters for robust EEG single-trial analysis [J].
Blankertz, Benjamin ;
Tomioka, Ryota ;
Lemm, Steven ;
Kawanabe, Motoaki ;
Mueller, Klaus-Robert .
IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (01) :41-56
[9]   The Berlin brain-computer interface: non-medical uses of BCI technology [J].
Blankertz, Benjamin ;
Tangermann, Michael ;
Vidaurre, Carmen ;
Fazli, Siamac ;
Sannelli, Claudia ;
Haufe, Stefan ;
Maeder, Cecilia ;
Ramsey, Lenny ;
Sturm, Irene ;
Curio, Gabriel ;
Mueller, Klaus-Robert .
FRONTIERS IN NEUROSCIENCE, 2010, 4
[10]  
Borg I., 2005, MODERN MULTIDIMENSIO, P137