HYPERSPECTRAL IMAGE CLASSIFICATION USING LOCAL SPECTRAL ANGLE-BASED MANIFOLD LEARNING

被引:2
作者
Luo, Fulin [1 ]
Liu, Jiamin [1 ]
Huang, Hong [1 ,2 ]
Liu, Yumei [1 ]
机构
[1] Chongqing Univ, Educ Minist China, Key Lab Optoelect Technol & Syst, Chongqing 400044, Peoples R China
[2] Tech Ctr Chongqing Chuanyi Automat Co Ltd, Chongqing 401121, Peoples R China
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
Hyperspectral image classification; manifold learning; locally linear embedding; local spectral angle; DIMENSIONALITY REDUCTION;
D O I
10.1142/S0218001414500165
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Locally linear embedding (LLE) depends on the Euclidean distance (ED) to select the k-nearest neighbors. However, the ED may not reflect the actual geometry structure of data, which may lead to the selection of ineffective neighbors. The aim of our work is to make full use of the local spectral angle (LSA) to find proper neighbors for dimensionality reduction (DR) and classification of hyperspectral remote sensing data. At first, we propose an improved LLE method, called local spectral angle LLE (LSA-LLE), for DR. It uses the ED of data to obtain large-scale neighbors, then utilizes the spectral angle to get the exact neighbors in the large-scale neighbors. Furthermore, a local spectral angle-based nearest neighbor classifier (LSANN) has been proposed for classification. Experiments on two hyperspectral image data sets demonstrate the effectiveness of the presented methods.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Graph-based spatial-spectral feature learning for hyperspectral image classification
    Ahmad, Muhammad
    Khan, Adil Mehmood
    Hussain, Rasheed
    IET IMAGE PROCESSING, 2017, 11 (12) : 1310 - 1316
  • [42] Hyperspectral Image Spatial‑Spectral Classification Using Capsule Network Based Method
    Gao K.
    Yu X.
    Zhang P.
    Tan X.
    Liu B.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2022, 47 (03): : 428 - 437
  • [43] Spectral-Spatial Classification of Hyperspectral Image Based on Kernel Extreme Learning Machine
    Chen, Chen
    Li, Wei
    Su, Hongjun
    Liu, Kui
    REMOTE SENSING, 2014, 6 (06) : 5795 - 5814
  • [44] HYPERSPECTRAL IMAGE CLASSIFICATION USING DISTANCE METRIC BASED 1-DIMENSIONAL MANIFOLD EMBEDDING
    Luo, Hui-Wu
    Wang, Yu-Long
    Tang, Yuan Yan
    Li, Chun-Li
    Wang, Jian-Zhong
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2016, : 247 - 251
  • [45] Hyperspectral image spectral-spatial classification using local tensor discriminant feature extraction
    Wu, Di
    Zhang, Ye
    Zhong, Sheng Wei
    Zhou, Guang Jiao
    JOURNAL OF APPLIED REMOTE SENSING, 2016, 10
  • [46] Discriminative Manifold Learning Network using Adversarial Examples for Image Classification
    Zhang, Yuan
    Shi, Biming
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2018, 13 (05) : 2099 - 2106
  • [47] Hyperspectral Image Classification Using Local Collaborative Representation
    Peng, Yishu
    Yan, Yunhui
    Zhu, Wenjie
    Zhao, Jiuliang
    PATTERN RECOGNITION (CCPR 2014), PT I, 2014, 483 : 219 - 228
  • [48] Hyperspectral Image Classification Based on Active Learning and Spectral-Spatial Feature Fusion Using Spatial Coordinates
    Mu, Caihong
    Liu, Jian
    Liu, Yi
    Liu, Yijin
    IEEE ACCESS, 2020, 8 : 6768 - 6781
  • [49] VISUALIZATION OF HYPERSPECTRAL IMAGERY BASED ON MANIFOLD LEARNING
    Liao, Danping
    Ye, Minchao
    Jia, Sen
    Qian, Yuntao
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 1979 - 1982
  • [50] SSMD: Dimensionality Reduction and Classification of Hyperspectral Images Based on Spatial-Spectral Manifold Distance Metric Learning
    Jin, Yao
    Dong, Yanni
    Zhang, Yuxiang
    Hu, Xiangyun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60