HYPERSPECTRAL IMAGE CLASSIFICATION USING LOCAL SPECTRAL ANGLE-BASED MANIFOLD LEARNING

被引:2
|
作者
Luo, Fulin [1 ]
Liu, Jiamin [1 ]
Huang, Hong [1 ,2 ]
Liu, Yumei [1 ]
机构
[1] Chongqing Univ, Educ Minist China, Key Lab Optoelect Technol & Syst, Chongqing 400044, Peoples R China
[2] Tech Ctr Chongqing Chuanyi Automat Co Ltd, Chongqing 401121, Peoples R China
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
Hyperspectral image classification; manifold learning; locally linear embedding; local spectral angle; DIMENSIONALITY REDUCTION;
D O I
10.1142/S0218001414500165
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Locally linear embedding (LLE) depends on the Euclidean distance (ED) to select the k-nearest neighbors. However, the ED may not reflect the actual geometry structure of data, which may lead to the selection of ineffective neighbors. The aim of our work is to make full use of the local spectral angle (LSA) to find proper neighbors for dimensionality reduction (DR) and classification of hyperspectral remote sensing data. At first, we propose an improved LLE method, called local spectral angle LLE (LSA-LLE), for DR. It uses the ED of data to obtain large-scale neighbors, then utilizes the spectral angle to get the exact neighbors in the large-scale neighbors. Furthermore, a local spectral angle-based nearest neighbor classifier (LSANN) has been proposed for classification. Experiments on two hyperspectral image data sets demonstrate the effectiveness of the presented methods.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] SPECTRAL REGRESSION DISCRIMINANT ANALYSIS FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Pan, Yinsong
    Wu, Junyuan
    Huang, Hong
    Liu, Jiamin
    XXII ISPRS CONGRESS, TECHNICAL COMMISSION III, 2012, 39-B3 : 503 - 508
  • [22] Image Classification Approach Based on Manifold Learning in Web Image Mining
    Zhu, Rong
    Yao, Min
    Liu, Yiming
    ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2009, 5678 : 780 - 787
  • [23] Manifold-Based Sparse Representation for Hyperspectral Image Classification
    Tang, Yuan Yan
    Yuan, Haoliang
    Li, Luoqing
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (12): : 7606 - 7618
  • [24] PerTurbo Manifold Learning Algorithm for Weakly Labeled Hyperspectral Image Classification
    Chapel, Laetitia
    Burger, Thomas
    Courty, Nicolas
    Lefevre, Sebastien
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (04) : 1070 - 1078
  • [25] Optimization based manifold embedding for hyperspectral image classification and visualization
    Yildirim, Mehmet Zahid
    Ozcan, Caner
    Ersoy, Okan
    REMOTE SENSING LETTERS, 2021, 12 (11) : 1158 - 1166
  • [26] Global-local manifold embedding broad graph convolutional network for hyperspectral image classification
    Cao, Heling
    Cao, Jun
    Chu, Yonghe
    Wang, Yun
    Liu, Guangen
    Li, Peng
    NEUROCOMPUTING, 2024, 602
  • [27] Dimensionality Reduction of Hyperspectral Imagery Based on Spatial-Spectral Manifold Learning
    Huang, Hong
    Shi, Guangyao
    He, Haibo
    Duan, Yule
    Luo, Fulin
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (06) : 2604 - 2616
  • [28] Hyperspectral image classification using spectral histograms and semi-supervised learning
    Rivera, Sol M. Cruz
    Manian, Vidya
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XIV, 2008, 6966
  • [29] Image Classification using Manifold Learning Based Non-Linear Dimensionality Reduction
    Faaeq, Ainuddin
    Guruler, Huseyin
    Peker, Musa
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [30] Local Constraint-Based Sparse Manifold Hypergraph Learning for Dimensionality Reduction of Hyperspectral Image
    Duan, Yule
    Huang, Hong
    Tang, Yuxiao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01): : 613 - 628