Towards the standing wave surface plasmon resonance fluorescence microscopy

被引:0
作者
Chung, Euiheon [1 ]
Tang, Wai Teng [2 ]
Kim, Yang-Hyo [3 ]
Sheppard, Colin J. R. [5 ]
So, Peter T. C. [3 ,4 ]
机构
[1] Harvard Mit Div Hlth Sci & Technol, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Natl Univ Singapore, Computat & Syst Biol, Singapore, Singapore
[3] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[4] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
[5] Natl Univ Singapore, Div Bioengn, Singapore 117576, Singapore
来源
PLASMONICS IN BIOLOGY AND MEDICINE IV | 2007年 / 6450卷
关键词
fluorescence microscopy; surface plasmon resonance; point-spread function; back-focal plane imaging; standing-wave; surface plasmon coupled emission;
D O I
10.1117/12.705720
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Surface plasmons are coherent oscillations of the free electrons on metal surface which can be used to improve the excitation efficiency of fluorophores due to increased field enhancement. Surface plasmon resonance fluorescence (SPRF) microscopy is a wide-field optical imaging technique that utilizes the evanescent electromagnetic field of surface plasmons to excite fluorophores near to a surface of a metal film. With the same excitation power, the field enhancement effect of the surface plasmon resonance (SPR) leads to strong fluorescence emission and thus increases the signal to noise ratio of detection. However, there have been few studies on the image formation process for SPRF in terms of its point-spread function. By imaging fluorescent microspheres with size below the diffraction limit, we obtained the point-spread function for SPRF. The SPR enhancement is confirmed by back-focal-plane imaging with various incidence angles of the excitation beam. Furthermore, we will investigate the potential of resolution enhancement by generating standing wave with two symmetric incident excitation beams toward the standing-wave surface plasmon resonance fluorescence (SW-SPRF) microscopy.
引用
收藏
页数:8
相关论文
共 12 条
  • [1] Visualizing membrane trafficking using total internal reflection fluorescence microscopy
    Beaumont, V
    [J]. BIOCHEMICAL SOCIETY TRANSACTIONS, 2003, 31 : 819 - 823
  • [2] Application of surface plasmon coupled emission to study of muscle
    Borejdo, J.
    Gryczynski, Z.
    Calander, N.
    Muthu, P.
    Gryczynski, I.
    [J]. BIOPHYSICAL JOURNAL, 2006, 91 (07) : 2626 - 2635
  • [3] Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope
    Borejdo, J.
    Calander, N.
    Gryczynski, Z.
    Gryczynski, I.
    [J]. OPTICS EXPRESS, 2006, 14 (17): : 7878 - 7888
  • [4] Extended resolution wide-field optical imaging: objective-launched standing-wave total internal reflection fluorescence microscopy
    Chung, E
    Kim, DK
    So, PTC
    [J]. OPTICS LETTERS, 2006, 31 (07) : 945 - 947
  • [5] Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission
    Gryczynski, I
    Malicka, J
    Gryczynski, Z
    Lakowicz, JR
    [J]. ANALYTICAL BIOCHEMISTRY, 2004, 324 (02) : 170 - 182
  • [6] Radiative decay engineering 3. Surface plasmon-coupled directional emission
    Lakowicz, JR
    [J]. ANALYTICAL BIOCHEMISTRY, 2004, 324 (02) : 153 - 169
  • [7] Directional surface plasmon-coupled emission: a new method for high sensitivity detection
    Lakowicz, JR
    Malicka, J
    Gryczynski, I
    Gryczynski, Z
    [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2003, 307 (03) : 435 - 439
  • [8] DNA hybridization using surface plasmon-coupled emission
    Malicka, J
    Gryczynski, I
    Gryczynski, Z
    Lakowicz, JR
    [J]. ANALYTICAL CHEMISTRY, 2003, 75 (23) : 6629 - 6633
  • [9] OPTICAL CHEMICAL SENSOR BASED ON SURFACE-PLASMON MEASUREMENT
    MATSUBARA, K
    KAWATA, S
    MINAMI, S
    [J]. APPLIED OPTICS, 1988, 27 (06): : 1160 - 1163
  • [10] Raether H, 1987, SURFACE PLASMONS SMO