Electromagnetic Properties of Phosphate Composite Materials with Boron-Containing Carbon Nanotubes

被引:5
作者
Plyushch, A. O. [1 ]
Sokol, A. A. [2 ]
Lapko, K. N. [2 ]
Kuzhir, P. P. [1 ,3 ]
Fedoseeva, Yu. V. [4 ]
Romanenko, A. I. [4 ]
Anikeeva, O. B. [4 ]
Bulusheva, L. G. [3 ,4 ]
Okotrub, A. V. [3 ,4 ]
机构
[1] Belarusian State Univ, Res Inst Nucl Problems, Minsk 220030, BELARUS
[2] Belarusian State Univ, Minsk 220030, BELARUS
[3] Natl Res Tomsk State Univ, Tomsk 634050, Russia
[4] Russian Acad Sci, Nikolaev Inst Inorgan Chem, Siberian Branch, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
NITROGEN;
D O I
10.1134/S1063783414120257
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The possibility of developing electromagnetic composite materials based on unfired heat-resistant mechanically strong phosphate ceramics has been studied. Boron-containing multiwalled carbon nanotubes and onion-like particles (B-MWCNTs) synthesized by electric-arc evaporation of a graphite rod enriched with boron are used as a functional additive to the phosphate matrix. According to transmission electron microscopy, the average nanoparticle length is similar to 100 nm. According to X-ray photoelectron spectroscopy and X-ray absorption spectroscopy, the boron content in B-MWCNT walls is less than 1 at %, and substitution of carbon atoms with boron leads to the formation of acceptor states in the conduction band. An increase in the electromagnetic response of phosphate ceramics by similar to 53 and similar to 13-15% for 1.5 wt % B-MWCNT additive is detected in quasi-static and gigahertz ranges, respectively. It is assumed that a stronger effect can be achieved using longer B-MWCNTs than those formed under electric arc conditions.
引用
收藏
页码:2537 / 2542
页数:6
相关论文
共 36 条
  • [11] Linear and nonlinear optical properties of carbon nanotubes from first-principles calculations
    Guo, GY
    Chu, KC
    Wang, DS
    Duan, CG
    [J]. PHYSICAL REVIEW B, 2004, 69 (20): : 205416 - 1
  • [12] Fundamental transmitting properties of carbon nanotube antennas
    Hanson, GW
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2005, 53 (11) : 3426 - 3435
  • [13] Structure and electrical conductivity of nitrogen-doped carbon nanofibers
    Ismagilov, Zinfer R.
    Shalagina, Anastasia E.
    Podyacheva, Olga Yu.
    Ischenko, Arkady V.
    Kibis, Lidiya S.
    Boronin, Andrey I.
    Chesalov, Yury A.
    Kochubey, Dmitry I.
    Romanenko, Anatoly I.
    Anikeeva, Olga B.
    Buryakov, Timofey I.
    Tkachev, Evgeniy N.
    [J]. CARBON, 2009, 47 (08) : 1922 - 1929
  • [14] Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes
    Jana, Debnarayan
    Sun, Chia-Liang
    Chen, Li-Chyong
    Chen, Kuei-Hsien
    [J]. PROGRESS IN MATERIALS SCIENCE, 2013, 58 (05) : 565 - 635
  • [15] Effect of nitrogen doping on the electromagnetic properties of carbon nanotube-based composites
    Kanygin, M. A.
    Sedelnikova, O. V.
    Asanov, I. P.
    Bulusheva, L. G.
    Okotrub, A. V.
    Kuzhir, P. P.
    Plyushch, A. O.
    Maksimenko, S. A.
    Lapko, K. N.
    Sokol, A. A.
    Ivashkevich, O. A.
    Lambin, Ph.
    [J]. JOURNAL OF APPLIED PHYSICS, 2013, 113 (14)
  • [16] Comparison of structural changes in nitrogen and boron-doped multi-walled carbon nanotubes
    Koos, Antal A.
    Dillon, Frank
    Obraztsova, Ekaterina A.
    Crossley, Alison
    Grobert, Nicole
    [J]. CARBON, 2010, 48 (11) : 3033 - 3041
  • [17] Korpus V. A., RF Patent, Patent No. [2 035 432, 2035432]
  • [18] Krylova Z. F., RF Patent, Patent No. [2 066 335, 2066335]
  • [19] Latil S., 2005, NANOTECHNOLOGY, V5, P1345
  • [20] Physical properties of CVD boron-doped multiwalled carbon nanotubes
    Mondal, Kartick C.
    Strydom, Andre M.
    Erasmus, Rudolph M.
    Keartland, Jonathan M.
    Coville, Neil J.
    [J]. MATERIALS CHEMISTRY AND PHYSICS, 2008, 111 (2-3) : 386 - 390