Dynamic theory for incompressible Smectic-A liquid crystals: Existence and regularity

被引:26
作者
Liu, C [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Penn State Univ, Ctr Phys Mat, University Pk, PA 16802 USA
关键词
smectic-A liquid crystals; Navier-Stokes equations;
D O I
10.3934/dcds.2000.6.591
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a system that was proposed in [3] in order to model the dynamic of Smectic-A liquid crystals. We establish the energy dissipative relation of the system and prove the existence of global weak solutions. A higher order energy estimate is also established for the existence of the classical solutions and the regularity of the weak solutions. Some regularity and stability results are also discussed in this paper.
引用
收藏
页码:591 / 608
页数:18
相关论文
共 16 条
[1]  
ANTONTSEV SN, 1990, BOUNDARY VALUE PROBL
[2]  
DEGENNES PG, 1993, PHYSICS LIQUID CRYST
[3]  
E W, 1997, COMM PURE APPL MATH
[4]  
Ericksen J., 1961, RES MECH, V21, P381
[5]  
Ladyzenskaya O. A., 1969, MATH THEORY VISCOUS
[6]  
LADYZENSKAYA OA, 1968, T MATH MON, V23
[7]  
LAI MJ, 1998, THEORETICAL NUMERICA
[8]  
Leslie F., 1979, ADV LIQ CRYST, V4, P1, DOI [10.1016/B978-0-12-452650-1.50012-4, DOI 10.1016/B978-0-12-025004-2.50008-9]
[9]  
LIN F. H., 1996, Discrete Contin. Dyn. Syst., V2, P1, DOI DOI 10.3934/dcds.1996.2.1
[10]   NONPARABOLIC DISSIPATIVE SYSTEMS MODELING THE FLOW OF LIQUID-CRYSTALS [J].
LIN, FH ;
LIU, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1995, 48 (05) :501-537