Improved contour integral methods for parabolic PDEs

被引:37
作者
Weideman, J. A. C. [1 ]
机构
[1] Univ Stellenbosch, ZA-7600 Stellenbosch, South Africa
基金
新加坡国家研究基金会;
关键词
matrix exponential; Laplace transform; numerical contour integration; convection-diffusion PDE; NUMERICAL INVERSION; LAPLACE TRANSFORMS; OPERATOR; APPROXIMATION;
D O I
10.1093/imanum/drn074
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
One way of computing the matrix exponential that arises in semidiscrete parabolic partial differential equations is via the Dunford-Cauchy integral formula. The integral is approximated by the trapezoidal or midpoint rules on a Hankel contour defined by a suitable change of variables. In a recent paper by Weideman & Trefethen (2007, Math. Comput., 76, 1341-1356) two widely used contours were analysed. Estimates for the optimal parameters that define these contours were proposed. In this paper this analysis is extended in two directions. First, the effect of roundoff error is now included in the error model. Second, we extend the results to the case of a model convection-diffusion equation, where a large convective term causes the matrix to be highly non-normal.
引用
收藏
页码:334 / 350
页数:17
相关论文
共 18 条
[1]  
Gavrilyuk I. P., 2001, Computational Methods in Applied Mathematics, V1, DOI 10.2478/cmam-2001-0022
[2]   Exponentially convergent algorithms for the operator exponential with applications to inhomogeneous problems in Banach spaces [J].
Gavrilyuk, IP ;
Makarov, VL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :2144-2171
[3]  
Gavrilyuk IP, 2005, MATH COMPUT, V74, P681
[4]   H-Matrix approximation for the operator exponential with applications [J].
Gavrilyuk, IP ;
Hackbusch, W ;
Khoromskij, BN .
NUMERISCHE MATHEMATIK, 2002, 92 (01) :83-111
[5]  
Golub G. H., 1996, MATRIX COMPUTATIONS
[6]  
LIN F, 2003, THESIS OREGON STATE
[7]   On the numerical inversion of the Laplace transform of certain holomorphic mappings [J].
López-Fernández, M ;
Palencia, C .
APPLIED NUMERICAL MATHEMATICS, 2004, 51 (2-3) :289-303
[8]   A spectral order method for inverting sectorial Laplace transforms [J].
Lopez-Fernandez, Maria ;
Palencia, Cesar ;
Schaedle, Achim .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (03) :1332-1350
[9]  
MARTENSEN E, 1968, Z ANGEW MATH MECH, V48, pT83