A survey on lagrange interpolation based on equally spaced nodes

被引:0
作者
Revers, M [1 ]
机构
[1] Salzburg Univ, Dept Math, A-5020 Salzburg, Austria
来源
ADVANCED PROBLEMS IN CONSTRUCTIVE APPROXIMATION | 2003年 / 142卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Lagrange interpolation polynomials based on the equidistant node system have not been a popular subject in approximation theory. This is due to some famous examples published by C. Runge in 1901 and later by S.N. Bernstein in 1918 which discouraged mathematicians from considering this method of interpolation. This paper provides a brief survey of Lagrange interpolation polynomials which are based on equidistant nodes including recent results on pointwise divergence properties and certain limit relations.
引用
收藏
页码:153 / 163
页数:11
相关论文
共 50 条
[21]   Convergence of lagrange interpolation processes based on new systems of nodes [J].
F. Peherstorfer .
Acta Mathematica Hungarica, 1997, 74 :101-123
[22]   ON INTERPOLATING CUBIC SPLINES WITH EQUALLY-SPACED NODES [J].
SCHURER, F ;
CHENEY, EW .
PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1968, 71 (05) :517-&
[23]   On the construction of optimal quadrature formulas with equally spaced nodes [J].
Shadimetov, Kh. M. ;
Azamov, S. S. .
FILOMAT, 2024, 38 (29) :10279-10295
[25]   Equally spaced points are optimal for Brownian Bridge kernel interpolation [J].
Santin, Gabriele .
APPLIED MATHEMATICS LETTERS, 2023, 137
[26]   On the Negative Extremums of Fundamental Functions of Lagrange Interpolation Based on Chebyshev Nodes [J].
Laiyi Zhu ;
Xu Xu .
Analysis in Theory and Applications, 2013, 29 (04) :348-357
[27]   ON THE LEBESGUE FUNCTION FOR LAGRANGE INTERPOLATION WITH EQUIDISTANT NODES [J].
MILLS, TM ;
SMITH, SJ .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1992, 52 :111-118
[28]   A note on Lagrange interpolation for |x|λ at equidistant nodes [J].
Ganzburg, MI ;
Revers, M .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 70 (03) :475-480
[29]   The divergence of Lagrange interpolation for |x|α at equidistant nodes [J].
Revers, M .
JOURNAL OF APPROXIMATION THEORY, 2000, 103 (02) :269-280
[30]   LEBESGUE CONSTANT FOR LAGRANGE INTERPOLATION ON EQUIDISTANT NODES [J].
A. Eisinberg ;
G. Fedele ;
G. Franzè .
Analysis in Theory and Applications, 2004, (04) :323-331