Eikonal equations on the Sierpinski gasket

被引:9
|
作者
Camilli, Fabio [1 ]
Capitanelli, Raffaela [1 ]
Marchi, Claudio [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Sci Base & Applicate Ingn, Via Scarpa 16, I-00161 Rome, Italy
[2] Univ Padua, Dipartimento Ingn Informaz, Via Gradenigo 6-B, I-35131 Padua, Italy
关键词
HAMILTON-JACOBI EQUATIONS;
D O I
10.1007/s00208-015-1251-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the eikonal equation on the Sierpinski gasket in the spirit of the construction of the Laplacian in Kigami (Analysis on fractals. Cambridge Tracts in Mathematics, 2001): we consider graph eikonal equations on the prefractals and we show that the solutions of these problems converge to a function defined on the fractal set. We characterize this limit function as the unique metric viscosity solution to the eikonal equation on the Sierpinski gasket according to the definition introduced in Giga et al. (Trans Am Math Soc 367: 49-66, 2015).
引用
收藏
页码:1167 / 1188
页数:22
相关论文
共 50 条
  • [31] Hausdorff measure of Sierpinski gasket
    周作领
    Science China Mathematics, 1997, (10) : 1016 - 1021
  • [32] Broadcasting in Sierpinski gasket graphs
    Shanthakumari, A.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2015, 92 : 111 - 119
  • [33] Spanning trees on the Sierpinski gasket
    Chang, Shu-Chiuan
    Chen, Lung-Chi
    Yang, Wei-Shih
    JOURNAL OF STATISTICAL PHYSICS, 2007, 126 (03) : 649 - 667
  • [34] Orthogonal Polynomials on the Sierpinski Gasket
    Kasso A. Okoudjou
    Robert S. Strichartz
    Elizabeth K. Tuley
    Constructive Approximation, 2013, 37 : 311 - 340
  • [35] Magnetoinductance of a superconducting Sierpinski gasket
    Korshunov, S. E.
    Meyer, R.
    Martinoli, P.
    Physical Review B: Condensed Matter, 51 (09):
  • [36] MAGNETOINDUCTANCE OF A SUPERCONDUCTING SIERPINSKI GASKET
    KORSHUNOV, SE
    MEYER, R
    MARTINOLI, P
    PHYSICAL REVIEW B, 1995, 51 (09): : 5914 - 5926
  • [37] ACYCLIC ORIENTATIONS ON THE SIERPINSKI GASKET
    Chang, Shu-Chiuan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2012, 26 (24):
  • [38] Limit Chains on the Sierpinski Gasket
    Hinz, Michael
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (05) : 1797 - 1829
  • [39] Gas diffusion in a Sierpinski gasket
    Cao, Liyong
    He, Rong
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2009, 49 (05): : 711 - 714
  • [40] Extensions and their Minimizations on the Sierpinski Gasket
    Pak-Hin Li
    Nicholas Ryder
    Robert S. Strichartz
    Baris Evren Ugurcan
    Potential Analysis, 2014, 41 : 1167 - 1201