Minimum Codegree Threshold for C63-Factors in 3-Uniform Hypergraphs

被引:8
|
作者
Gao, Wei [1 ]
Han, Jie [2 ]
机构
[1] Auburn Univ, Dept Math & Stat, 221 Parker Hall, Auburn, AL 36849 USA
[2] Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
LOOSE HAMILTON CYCLES; PERFECT MATCHINGS; UNIFORM HYPERGRAPHS; PACKING;
D O I
10.1017/S0963548317000104
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let C-6(3) be the 3-uniform hypergraph on {1,...,6} with edges 123,345, 561, which can be seen as the analogue of the triangle in 3-uniform hypergraphs. For sufficiently large n divisible by 6, we show that every n-vertex 3-uniform hypergraph H with minimum codegree at least n/3 contains a C-6(3)-factor, that is, a spanning subhypergraph consisting of vertex-disjoint copies of C-6(3). The minimum codegree condition is best possible. This improves the asymptotic result obtained by Mycroft and answers a question of Rodl and Rucinski exactly.
引用
收藏
页码:536 / 559
页数:24
相关论文
共 32 条
  • [21] A Motzkin–Straus Type Result for 3-Uniform Hypergraphs
    Yuejian Peng
    Cheng Zhao
    Graphs and Combinatorics, 2013, 29 : 681 - 694
  • [22] Covering 3-uniform hypergraphs by vertex-disjoint tight paths
    Han, Jie
    JOURNAL OF GRAPH THEORY, 2022, 101 (04) : 782 - 802
  • [23] Perfect matchings in 3-partite 3-uniform hypergraphs
    Lo, Allan
    Markstrom, Klas
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 127 : 22 - 57
  • [24] Embedding loose spanning trees in 3-uniform hypergraphs
    Pehova, Yanitsa
    Petrova, Kalina
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2024, 168 : 47 - 67
  • [25] Exact Minimum Codegree Threshold for K4--Factors
    Han, Jie
    Lo, Allan
    Treglown, Andrew
    Zhao, Yi
    COMBINATORICS PROBABILITY & COMPUTING, 2017, 26 (06) : 856 - 885
  • [26] Vertex degree sums for perfect matchings in 3-uniform hypergraphs
    Zhang, Yi
    Zhao, Yi
    Lu, Mei
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (03)
  • [27] Dirac-type conditions for hamiltonian paths and cycles in 3-uniform hypergraphs
    Roedl, Vojtech
    Rucinski, Andrzej
    Szemeredi, Endre
    ADVANCES IN MATHEMATICS, 2011, 227 (03) : 1225 - 1299
  • [28] Tiling 3-Uniform Hypergraphs With K43-2e
    Czygrinow, Andrzej
    DeBiasio, Louis
    Nagle, Brendan
    JOURNAL OF GRAPH THEORY, 2014, 75 (02) : 124 - 136
  • [29] Characterizing 3-uniform linear extremal hypergraphs on feedback vertex number
    Tang, Zhongzheng
    Tang, Yucong
    Diao, Zhuo
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (05) : 3310 - 3330
  • [30] Large Y3,2-tilings in 3-uniform hypergraphs
    Han, Jie
    Sun, Lin
    Wang, Guanghui
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 120