Examples of refinable componentwise polynomials

被引:7
作者
Bi, Ning
Han, Bin
Shen, Zuowei [1 ]
机构
[1] Natl Univ Singapore, Dept Math, Singapore 117543, Singapore
[2] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[3] Sun Yat Sen Univ, Dept Sci Comp & Comp Applicat, Guangzhou 510275, Peoples R China
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
componentwise polynomial; symmetric refinable function; orthogonality; interpolation;
D O I
10.1016/j.acha.2006.09.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This short note presents four examples of compactly supported symmetric refinable componentwise polynomial functions: (i) a componentwise constant interpolatory continuous refinable function and its derived symmetric tight wavelet frame; (ii) a cornponentwise constant continuous orthonormal and interpolatory refinable function and its associated symmetric orthonormal wavelet basis; (iii) a differentiable symmetric componentwise linear polynomial orthonormal refinable function; (iv) a symmetric refinable componentwise linear polynomial which is interpolatory and differentiable. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:368 / 373
页数:6
相关论文
共 10 条
[1]  
Bi N, 1998, Z ANAL ANWEND, V17, P813
[2]  
BI N, 2006, PSEUDO SPLINES DILAT
[3]   Vector cascade algorithms and refinable function vectors in Sobolev spaces [J].
Han, B .
JOURNAL OF APPROXIMATION THEORY, 2003, 124 (01) :44-88
[4]   Symmetric orthonormal scaling functions and wavelets with dilation factor 4 [J].
Han, B .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1998, 8 (03) :221-247
[5]   Optimal C2 two-dimensional interpolatory ternary subdivision schemes with two-ring stencils [J].
Han, Bin ;
Jia, Rong-Qing .
MATHEMATICS OF COMPUTATION, 2006, 75 (255) :1287-1308
[6]   Compactly supported (bi)orthogonal wavelets generated by interpolatory refinable functions [J].
Ji, H ;
Shen, ZW .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1999, 11 (01) :81-104
[7]   Stability and orthonormality of multivariate refinable functions [J].
Lawton, W ;
Lee, SL ;
Shen, ZW .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (04) :999-1014
[8]  
LAWTON W, 1995, ADV COMPUT MATH, V3, P137, DOI 10.1007/BF03028364
[9]   Affine systems in L-2(R-d): The analysis of the analysis operator [J].
Ron, A ;
Shen, ZW .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 148 (02) :408-447
[10]  
Sun Q., 2001, INTRO MULTIBAND WAVE