The calibration method for the Mumford-Shah functional and free-discontinuity problems

被引:70
作者
Alberti, G
Bouchitté, G
Dal Maso, G
机构
[1] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
[2] Univ Toulon & Var, UFR Sci & Tech, F-83957 La Garde, France
[3] SISSA, I-34014 Trieste, Italy
关键词
D O I
10.1007/s005260100152
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a minimality criterion for the Mumford-Shah functional, and more generally for non convex variational integrals on SBV which couple a surface and a bulk term. This method provides short and easy proofs for several minimality results.
引用
收藏
页码:299 / 333
页数:35
相关论文
共 35 条
[1]   On a long-standing conjecture of E.!De Giorgi:: Symmetry in 3D for general nonlinearities and a local minimality property [J].
Alberti, G ;
Ambrosio, L ;
Cabré, X .
ACTA APPLICANDAE MATHEMATICAE, 2001, 65 (1-3) :9-33
[2]   The calibration method for the Mumford-Shah functional [J].
Alberti, G ;
Bouchitté, G ;
Dal Maso, G .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (03) :249-254
[3]  
AMBROSIO L, 1990, J MATH PURE APPL, V69, P307
[4]   EXISTENCE THEORY FOR A NEW CLASS OF VARIATIONAL-PROBLEMS [J].
AMBROSIO, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 111 (04) :291-322
[5]  
Ambrosio L., 1995, REND ACAD NAZ SCI XL, V19, P191
[6]  
AMBROSIO L, 1999, OXFORD MATH MONOGRAP
[7]  
Ambrosio L., 1997, CORSO INTRO TEORIA G
[8]  
[Anonymous], ANN SCUOLA NORMALE S
[9]  
[Anonymous], 1992, MEASURE THEORY FINE
[10]  
BONNET A, 2001, ASTERISQUE