Remark on the Cauchy problem for the evolution p-Laplacian equation

被引:0
作者
Wang, Liangwei [1 ]
Yin, Jngxue [2 ]
Cao, Jinde [3 ,4 ]
机构
[1] Chongqing Three Gorges Univ, Sch Math & Stat, 666 Tian Xing Rd, Chongqing 404100, Peoples R China
[2] South China Normal Univ, Sch Math Sci, 55 West Zhong Shan Rd, Guangzhou 510631, Guangdong, Peoples R China
[3] Southeast Univ, Sch Math, 2 Southeast Univ Rd, Nanjing 210996, Jiangsu, Peoples R China
[4] Southeast Univ, Res Ctr Complex Syst & Network Sci, 2 Southeast Univ Rd, Nanjing 210996, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
chaos; evolution p-Laplacian equation; Cauchy problem; propagation estimate; decay estimate; PERTURBED NLS SYSTEMS; HOMOCLINIC ORBITS; NAVIER-STOKES; CHAOS; COMPLEXITY; BEHAVIOR;
D O I
10.1186/s13660-017-1449-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that the semigroup S(t) generated by the Cauchy problem of the evolution p-Laplacian equation partial derivative u/partial derivative t - div(|del u|(p-2)del u) = 0 (p > 2) is continuous form a weighted L-infinity space to the continuous space C-0(R-N). Then we use this property to reveal the fact that the evolution p-Laplacian equation generates a chaotic dynamical system on some compact subsets of C-0(R-N). For this purpose, we need to establish the propagation estimates and the space-time decay estimates for the solutions first.
引用
收藏
页数:16
相关论文
共 31 条
[1]   ON DEVANEY DEFINITION OF CHAOS [J].
BANKS, J ;
BROOKS, J ;
CAIRNS, G ;
DAVIS, G ;
STACEY, P .
AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (04) :332-334
[2]   Chaos in the beam equation [J].
Battelli, F ;
Feckan, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 209 (01) :172-227
[3]  
Benilan Ph, 1972, THESIS
[4]   Asymptotic complexity in filtration equations [J].
Carrillo, J. A. ;
Vazquez, J. L. .
JOURNAL OF EVOLUTION EQUATIONS, 2007, 7 (03) :471-495
[5]  
Cazenave T, 2012, DISCRETE CONT DYN-A, V9, P1105
[6]  
Cazenave T, 2003, ANN SCUOLA NORM-SCI, V2, P77
[7]  
Cazenave T, 2005, ADV DIFFERENTIAL EQU, V10, P361
[8]   MULTI-SCALE MULTI-PROFILE GLOBAL SOLUTIONS OF PARABOLIC EQUATIONS IN RN [J].
Cazenave, Thierry ;
Dickstein, Flavio ;
Weissler, Fred B. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2012, 5 (03) :449-472
[9]  
Devaney RL, 1987, B AM MATH SOC, V16, P313
[10]   ON THE CAUCHY-PROBLEM AND INITIAL TRACES FOR A DEGENERATE PARABOLIC EQUATION [J].
DIBENEDETTO, E ;
HERRERO, MA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 314 (01) :187-224