Remark on the Cauchy problem for the evolution p-Laplacian equation

被引:0
作者
Wang, Liangwei [1 ]
Yin, Jngxue [2 ]
Cao, Jinde [3 ,4 ]
机构
[1] Chongqing Three Gorges Univ, Sch Math & Stat, 666 Tian Xing Rd, Chongqing 404100, Peoples R China
[2] South China Normal Univ, Sch Math Sci, 55 West Zhong Shan Rd, Guangzhou 510631, Guangdong, Peoples R China
[3] Southeast Univ, Sch Math, 2 Southeast Univ Rd, Nanjing 210996, Jiangsu, Peoples R China
[4] Southeast Univ, Res Ctr Complex Syst & Network Sci, 2 Southeast Univ Rd, Nanjing 210996, Jiangsu, Peoples R China
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2017年
基金
中国国家自然科学基金;
关键词
chaos; evolution p-Laplacian equation; Cauchy problem; propagation estimate; decay estimate; PERTURBED NLS SYSTEMS; HOMOCLINIC ORBITS; NAVIER-STOKES; CHAOS; COMPLEXITY; BEHAVIOR;
D O I
10.1186/s13660-017-1449-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that the semigroup S(t) generated by the Cauchy problem of the evolution p-Laplacian equation partial derivative u/partial derivative t - div(|del u|(p-2)del u) = 0 (p > 2) is continuous form a weighted L-infinity space to the continuous space C-0(R-N). Then we use this property to reveal the fact that the evolution p-Laplacian equation generates a chaotic dynamical system on some compact subsets of C-0(R-N). For this purpose, we need to establish the propagation estimates and the space-time decay estimates for the solutions first.
引用
收藏
页数:16
相关论文
共 31 条
  • [1] ON DEVANEY DEFINITION OF CHAOS
    BANKS, J
    BROOKS, J
    CAIRNS, G
    DAVIS, G
    STACEY, P
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (04) : 332 - 334
  • [2] Chaos in the beam equation
    Battelli, F
    Feckan, M
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 209 (01) : 172 - 227
  • [3] Benilan Ph, 1972, THESIS
  • [4] Asymptotic complexity in filtration equations
    Carrillo, J. A.
    Vazquez, J. L.
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2007, 7 (03) : 471 - 495
  • [5] Cazenave T, 2012, DISCRETE CONT DYN-A, V9, P1105
  • [6] Cazenave T, 2003, ANN SCUOLA NORM-SCI, V2, P77
  • [7] Cazenave T, 2005, ADV DIFFERENTIAL EQU, V10, P361
  • [8] MULTI-SCALE MULTI-PROFILE GLOBAL SOLUTIONS OF PARABOLIC EQUATIONS IN RN
    Cazenave, Thierry
    Dickstein, Flavio
    Weissler, Fred B.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2012, 5 (03): : 449 - 472
  • [9] Devaney RL, 1987, B AM MATH SOC, V16, P313
  • [10] ON THE CAUCHY-PROBLEM AND INITIAL TRACES FOR A DEGENERATE PARABOLIC EQUATION
    DIBENEDETTO, E
    HERRERO, MA
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 314 (01) : 187 - 224