Recent Advances in Solid-Electrolyte Interphase for Li Metal Anode

被引:22
作者
He, Dafang [1 ]
Lu, Junhong [1 ]
He, Guangyu [1 ]
Chen, Haiqun [1 ]
机构
[1] Changzhou Univ, Adv Catalysis & Green Mfg Collaborat Innovat Ctr, Key Lab Adv Catalyt Mat & Technol, Changzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-ion battery; Li metal anode; lithium dendrite; SEI layer; modification; LITHIUM; BATTERIES;
D O I
10.3389/fchem.2022.916132
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium metal batteries (LMBs) are considered to be a substitute for lithium-ion batteries (LIBs) and the next-generation battery with high energy density. However, the commercialization of LMBs is seriously impeded by the uncontrollable growth of dangerous lithium dendrites during long-term cycling. The generation and growth of lithium dendrites are mainly derived from the unstable solid-electrolyte interphase (SEI) layer on the metallic lithium anode. The SEI layer is a key by-product formed on the surface of the lithium metal anode during the electrochemical reactions and has been the barrier to development in this area. An ideal SEI layer should possess electrical insulating, superior mechanical modulus, high electrochemical stability, and excellent Li-ion conductivity, which could improve the structural stability of the electrode upon a long cycling time. This mini-review carefully summarizes the recent developments in the SEI layer for LMBs, and the relationship between SEI layer optimization and electrochemical property is discussed. In addition, further development direction of a stable SEI layer is proposed.
引用
收藏
页数:6
相关论文
共 53 条
[1]   In Situ Dendrite Suppression Study of Nanolayer Encapsulated Li Metal Enabled by Zirconia Atomic Layer Deposition [J].
Alaboina, Pankaj K. ;
Rodrigues, Stanley ;
Rottmayer, Michael ;
Cho, Sung-Jin .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (38) :32801-32808
[2]   How to avoid dendrite formation in metal batteries: Innovative strategies for dendrite suppression [J].
Aslam, Muhammad Kashif ;
Niu, Yubin ;
Hussain, Tanveer ;
Tabassum, Hassina ;
Tang, Wenwen ;
Xu, Maowen ;
Ahuja, Rajeev .
NANO ENERGY, 2021, 86
[3]   A Scalable Approach to Dendrite-Free Lithium Anodes via Spontaneous Reduction of Spray-Coated Graphene Oxide Layers [J].
Bai, Maohui ;
Xie, Keyu ;
Yuan, Kai ;
Zhang, Kun ;
Li, Nan ;
Shen, Chao ;
Lai, Yanqing ;
Vajtai, Robert ;
Ajayan, Pulickel ;
Wei, Bingqing .
ADVANCED MATERIALS, 2018, 30 (29)
[4]   2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries [J].
Cha, Eunho ;
Patel, Mumukshu D. ;
Park, Juhong ;
Hwang, Jeongwoon ;
Prasad, Vish ;
Cho, Kyeongjae ;
Choi, Wonbong .
NATURE NANOTECHNOLOGY, 2018, 13 (04) :337-+
[5]   Self-healing single-ion-conductive artificial polymeric solid electrolyte interphases for stable lithium metal anodes [J].
Chang, Caiyun ;
Yao, Yuan ;
Li, Rongrong ;
Guo, Zi Hao ;
Li, Longwei ;
Pan, Chongxiang ;
Hu, Weiguo ;
Pu, Xiong .
NANO ENERGY, 2022, 93
[6]   In Situ Formation of Polycyclic Aromatic Hydrocarbons as an Artificial Hybrid Layer for Lithium Metal Anodes [J].
Chang, Shaozhong ;
Jin, Xin ;
He, Qiya ;
Liu, Tongchao ;
Fang, Jiabin ;
Shen, Zihan ;
Li, Zhonghua ;
Zhang, Shuo ;
Dahbi, Mouad ;
Alami, Jones ;
Amine, Khalil ;
Li, Ai-Dong ;
Zhang, Huigang ;
Lu, Jun .
NANO LETTERS, 2022, 22 (01) :263-270
[7]   Grain-Boundary-Rich Artificial SEI Layer for High-Rate Lithium Metal Anodes [J].
Chen, Chao ;
Liang, Qianwen ;
Wang, Gang ;
Liu, Dongdong ;
Xiong, Xunhui .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (04)
[8]   In Situ Preparation of Thin and Rigid COF Film on Li Anode as Artificial Solid Electrolyte Interphase Layer Resisting Li Dendrite Puncture [J].
Chen, Dongdong ;
Huang, Sheng ;
Zhong, Lei ;
Wang, Shuanjin ;
Xiao, Min ;
Han, Dongmei ;
Meng, Yuezhong .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (07)
[9]   Review on Li Deposition in Working Batteries: From Nucleation to Early Growth [J].
Chen, Xiao-Ru ;
Zhao, Bo-Chen ;
Yan, Chong ;
Zhang, Qiang .
ADVANCED MATERIALS, 2021, 33 (08)
[10]  
Ding JF, 2021, J ENERGY CHEM, V59, P306, DOI [10.1016/j.jechem.2020.11.0162095-4956/, 10.1016/j.jechem.2020.11.016]