The Quenched Critical Point for Self-Avoiding Walk on Random Conductors

被引:1
作者
Chino, Yuki [1 ]
Sakai, Akira [1 ]
机构
[1] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 060, Japan
关键词
Disordered systems; Self-avoiding walk; Random medium; Critical point; RANDOM-ENVIRONMENTS;
D O I
10.1007/s10955-016-1477-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Following similar analysis to that in Lacoin (Probab Theory Relat Fields 159: 777-808, 2014), we can show that the quenched critical point for self-avoiding walk on random conductors on Z(d) is almost surely a constant, which does not depend on the location of the reference point. We provide upper and lower bounds which are valid for all d >= 1.
引用
收藏
页码:754 / 764
页数:11
相关论文
共 23 条
[1]   On the critical point of the Random Walk Pinning Model in dimension d=3 [J].
Berger, Quentin ;
Toninelli, Fabio Lucio .
ELECTRONIC JOURNAL OF PROBABILITY, 2010, 15 :654-683
[2]  
Berkner M., 2010, ANN I H POINCARE-PR, V46, P424
[3]   SELF-AVOIDING WALK IN 5 OR MORE DIMENSIONS [J].
BRYDGES, D ;
SPENCER, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 97 (1-2) :125-148
[4]  
Chakrabarti B.K., 1984, Z PHYS B COND MAT, V55, P131
[5]   THE STATISTICS OF SELF-AVOIDING WALKS ON A DISORDERED LATTICE [J].
CHAKRABARTI, BK ;
KERTESZ, J .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 44 (03) :221-223
[6]  
Comets F., 2004, Stochastic analysis on large scale interacting systems, V39, P115
[7]  
Flory P J., PRINCIPLES POLYM CHE
[8]   THE CONFIGURATION OF REAL POLYMER CHAINS [J].
FLORY, PJ .
JOURNAL OF CHEMICAL PHYSICS, 1949, 17 (03) :303-310
[9]  
Fukushima R, 2012, ALEA-LAT AM J PROBAB, V9, P323
[10]  
Giacomin G., 2007, Random polymer models