Deep Learning based Segmentation of Fish in Noisy Forward Looking MBES Images

被引:13
作者
Christensen, Jesper Haahr [1 ,2 ]
Mogensen, Lars Valdemar [2 ]
Ravn, Ole [1 ]
机构
[1] Tech Univ Denmark, Elect Engn Dept, DK-2800 Lyngby, Denmark
[2] ATLAS MARIDAN, DK-2960 Rungsted Kyst, Denmark
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
Autonomous Underwater Vehicle (AUV); Deep Learning; Semantic Segmentation; Sonar Imaging; Multibeam Echosounder (MBES) Imaging; Fish Monitoring;
D O I
10.1016/j.ifacol.2020.12.1459
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we investigate a Deep Learning (DL) approach to fish segmentation in a small dataset of noisy low-resolution images generated by a forward-looking multibeam echosounder (MBES). We build on recent advances in DL and Convolutional Neural Networks (CNNs) for semantic segmentation and demonstrate an end-to-end approach for a fish/non-fish probability prediction for all range-azimuth positions projected by an imaging sonar. We use self-collected datasets from the Danish Sound and the Faroe Islands to train and test our model and present techniques to obtain satisfying performance and generalization even with a low-volume dataset. We show that our model proves the desired performance and has learned to harness the importance of semantic context and take this into account to separate noise and non-targets from real targets. Furthermore, we present techniques to deploy models on low-cost embedded platforms to obtain higher performance fit for edge environments - where compute and power are restricted by size/cost - for testing and prototyping. Copyright (C) 2020 The Authors.
引用
收藏
页码:14546 / 14551
页数:6
相关论文
共 17 条
[1]  
[Anonymous], ABS180504687 CORR
[2]  
[Anonymous], 2015, IEEE I CONF COMP VIS, DOI DOI 10.1109/ICCV.2015.123
[3]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[4]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[5]  
Christensen J H, 2018, 2018 IEEEOES AUT, DOI 10.1109/AUV.2018.8729798
[6]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[7]   Object Classification in Semi Structured Enviroment Using Forward-Looking Sonar [J].
dos Santos, Matheus ;
Ribeiro, Pedro Otavio ;
Nunez, Pedro ;
Drews-, Paulo, Jr. ;
Botelho, Silvia .
SENSORS, 2017, 17 (10)
[8]  
FUCHS LR, 2018, 2018 IEEE OEC AUT UN, P1, DOI DOI 10.1109/AUV.2018.8729686
[9]  
Geiger A, 2012, PROC CVPR IEEE, P3354, DOI 10.1109/CVPR.2012.6248074
[10]  
HORIMOTO H, 2018, 2018 IEEE OES AUT UN, P1, DOI DOI 10.1109/AUV.2018.8729723