Optimal distributed control of a 2D simplified Ericksen-Leslie system for the nematic liquid crystal flows

被引:1
作者
Liu, Qiao [1 ]
机构
[1] Hunan Normal Univ, Coll Math & Stat, Minist Educ China, Key Lab High Performance Comp & Stochast Informat, Changsha 410081, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Nematic liquid crystal flows; Optimal distributed control; Frechet differentiable; First-order necessary optimality conditions; REGULARITY; UNIQUENESS; BEHAVIOR;
D O I
10.1016/j.nonrwa.2019.103014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the initial boundary value problem of a simplified Ericksen-Leslie system modeling the incompressible nematic liquid crystal flows in two dimensions of space, where the equations of the velocity field are characterized by a time-dependent external force g(t) and a no-slip boundary condition, and the equations for the molecular orientation are subjected to a time-dependent Dirichlet boundary condition h(t). Based on the recently addressed well-posedness and regularity results of the system, we present a rigorous proof to show the existence of optimal distributed controls, the control-to-state operator is Frechet differentiable and first-order necessary optimality conditions for an associated optimal control problem. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:22
相关论文
共 20 条
[1]  
[Anonymous], MATH USSR SB
[2]   WELL-POSEDNESS AND LONG TERM BEHAVIOR OF A SIMPLIFIED ERICKSEN-LESLIE NON-AUTONOMOUS SYSTEM FOR NEMATIC LIQUID CRYSTAL FLOWS [J].
Bosia, Stefano .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (02) :407-441
[3]   Optimal Boundary Control of a Simplified Ericksen-Leslie System for Nematic Liquid Crystal Flows in 2D [J].
Cavaterra, Cecilia ;
Rocca, Elisabetta ;
Wu, Hao .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 224 (03) :1037-1086
[4]   Regularity and time-periodicity for a nematic liquid crystal model [J].
Climent-Ezquerra, Blanca ;
Guillen-Gonzalez, Francisco ;
Jesus Moreno-Iraberte, M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (1-2) :539-549
[5]   OPTIMAL DISTRIBUTED CONTROL OF A NONLOCAL CAHN-HILLIARD/NAVIER-STOKES SYSTEM IN TWO DIMENSIONS [J].
Frigeri, Sergio ;
Rocca, Elisabetta ;
Sprekels, Juergen .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2016, 54 (01) :221-250
[6]   LONG-TIME BEHAVIOR FOR A HYDRODYNAMIC MODEL ON NEMATIC LIQUID CRYSTAL FLOWS WITH ASYMPTOTIC STABILIZING BOUNDARY CONDITION AND EXTERNAL FORCE [J].
Grasselli, Maurizio ;
Wu, Hao .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (03) :965-1002
[7]   Sufficient conditions for regularity and uniqueness of a 3D nematic liquid crystal model [J].
Guillen-Gonzalez, F. ;
Rodriguez-Bellido, M. A. ;
Rojas-Medar, M. A. .
MATHEMATISCHE NACHRICHTEN, 2009, 282 (06) :846-867
[8]   Dynamics for controlled Navier-Stokes systems with distributed controls [J].
Hou, LS ;
Yan, Y .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1997, 35 (02) :654-677
[9]  
Leslie F. M., 1979, ADV LIQ CRYST, V4, P1, DOI 10.1016B978-0-12-025004-2.50008-9////
[10]  
Lin F.-H., 1996, DISCRETE CONT DYN-A, V2, P1, DOI DOI 10.3934/dcds.1996.2.1